The environmental role in disease progression has been appreciated for decades; however, understanding how airborne toxicant exposure can affect organs beyond the lungs is an underappreciated area of scientific inquiry. Particulate matter (PM) includes various gases, liquids, and particles in suspension and is produced by industrial activities such as fossil fuel combustion and natural events including wildfires and volcanic eruptions. Although agencies have attempted to reduce acceptable airborne particulate levels, with urbanization and population growth, these policies have been only moderately effective in mitigating disease progression.
View Article and Find Full Text PDFThe gut microbiota is made up of trillions of microbial cells including bacteria, viruses, fungi, and other microbial bodies and is greatly involved in the maintenance of proper health of the host body. In particular, the gut microbiota has been shown to not only be involved in brain development but also in the modulation of behavior, neuropsychiatric disorders, and neurodegenerative diseases including Alzheimer's disease. The precise mechanism by which the gut microbiota can affect the development of Alzheimer's disease is unknown, but the gut microbiota is thought to communicate with the brain directly via the vagus nerve or indirectly through signaling molecules such as cytokines, neuroendocrine hormones, bacterial components, neuroactive molecules, or microbial metabolites such as short-chain fatty acids.
View Article and Find Full Text PDFSince the spread of tobacco from the Americas hundreds of years ago, tobacco cigarettes and, more recently, alternative tobacco products have become global products of nicotine addiction. Within the evolving alternative tobacco product space, electronic cigarette (e-cigarette) vaping has surpassed conventional cigarette smoking among adolescents and young adults in the United States and beyond. This review describes the experimental and clinical evidence of e-cigarette toxicity and deleterious health effects.
View Article and Find Full Text PDFIn the United States, millions of adults use electronic cigarettes (e-cigs), and a majority of these users are former or current cigarette smokers. It is unclear, whether prior smoking status affects biological responses induced by e-cigs. In this study, differentiated human nasal epithelial cells (hNECs) from nonsmokers and smokers at air-liquid interface were acutely exposed to the e-cig generated aerosols of humectants, propylene glycol (PG), and glycerol (GLY).
View Article and Find Full Text PDFIn the United States, the recent surge of electronic cigarette (e-cig) use has raised questions concerning the safety of these devices. This study seeks to assess the pro-inflammatory and cellular stress effects of the vaped humectants propylene glycol (PG) and glycerol (GLY) on airway epithelial cells (16HBE cells and differentiated human bronchial epithelial cells) with a newly developed aerosol exposure system. This system allows for chemical characterization of e-cig generated aerosol particles as well as exposures of 16HBE cells at an air-liquid interface to vaped PG and GLY aerosol.
View Article and Find Full Text PDF