Publications by authors named "Yael Zilberstein"

Diffusing alpha-emitting radiation therapy (DaRT) employs intratumoral Ra-224-coated seeds that efficiently destroy solid tumors by slowly releasing alpha-emitting atoms inside the tumor. In immunogenic tumor models, DaRT was shown to activate systemic antitumor immunity. Agonists of the membrane-bound toll-like receptors (TLRs) enhanced these effects and led to tumor rejection.

View Article and Find Full Text PDF

In humans, carotid stenosis of 70% and above might be the cause of clinical symptoms such as transient ischemic attack and stroke. No clinical or animal studies have evaluated mild carotid occlusion, and few examined unilateral occlusion. Here, Westar rats underwent bilateral or unilateral carotid occlusion of 28-45%.

View Article and Find Full Text PDF

Blast induced traumatic brain injury (B-TBI) may cause various degrees of cognitive and behavioral disturbances but the exact brain pathophysiology involved is poorly understood. It was previously suggested that ganglioside alteration on the axon surface as well as axonal regenerating inhibitors (ARIs) such as myelin associated glycoprotein (MAG) were involved in axonal outgrowth inhibition (AOI), leading to brain damage. GM1 ganglioside content in the brain was significantly reduced while GD1 ganglioside was not affected.

View Article and Find Full Text PDF

We have previously reported that mild traumatic brain injury (mTBI) induced cognitive deficits as well as apoptotic changes in the brains of mice. Apoptosis may be caused by severe, prolonged accumulation of misfolded proteins, and protein aggregation in the endoplasmic reticulum (ER stress). In an additional study, we have reported that mTBI activated the pro-apoptotic arm of the integrated stress response (ISR).

View Article and Find Full Text PDF

Phenanthrene derivatives acting as potent PARP1 inhibitors prevented the bi-focal clustering of supernumerary centrosomes in multi-centrosomal human cancer cells in mitosis. The phenanthridine PJ-34 was the most potent molecule. Declustering of extra-centrosomes causes mitotic failure and cell death in multi-centrosomal cells.

View Article and Find Full Text PDF

Fibrosis is the main complication of muscular dystrophies. We identified collagen triple helix repeat containing 1 (Cthrc1) in skeletal and cardiac muscles of mice, representing Duchenne and congenital muscle dystrophies (DMD and CMD, respectively), and dysferlinopathy. In all of the mice, Cthrc1 was associated with high collagen type I levels; no Cthrc1 or collagen was observed in muscles of control mice.

View Article and Find Full Text PDF

Introduction: Stroma cells and extracellular matrix (ECM) components provide the pivotal microenvironment for tumor development. The study aimed to evaluate the importance of the pancreatic stroma for tumor development.

Methods: Pancreatic tumor cells were implanted subcutaneously into green fluorescent protein transgenic mice, and stroma cells invading the tumors were identified through immunohistochemistry.

View Article and Find Full Text PDF

Studies of sensorineural hearing loss have long suggested that survival of spiral ganglion neurons (SGNs) depends on trophic support provided by their peripheral targets, the inner hair cells (IHCs): following ototoxic drugs or acoustic overexposure, IHC death is rapid whereas SGN degeneration is always delayed. However, recent noise-trauma studies show that SGNs can die even when hair cells survive, and transgenic mouse models show that supporting cell dysfunction can cause SGN degeneration in the absence of IHC pathology. To reexamine this issue, we studied a model of IHC loss that does not involve noise or ototoxic drugs.

View Article and Find Full Text PDF

Gap junctions (GJs) belong to one of the most conserved cellular structures in multicellular organisms. They probably serve similar functions in all Metazoa, providing one of the most common forms of intercellular communication. GJs are widely distributed in embryonic cells and tissues and have been attributed an important role in development, modulating cell growth and differentiation.

View Article and Find Full Text PDF

Although locust feeding has been well studied, our understanding of the neural basis of feeding-related motor patterns is still far from complete. This paper focuses on interactions between the pattern of rhythmic movements of the mouth appendages, governed by the suboesophageal ganglion (SOG), and the foregut movements, controlled by the frontal ganglion (FG), in the desert locust. In vitro simultaneous extracellular nerve recordings were made from totally isolated ganglia as well as from fully interconnected SOG-FG and brain-SOG-FG preparations.

View Article and Find Full Text PDF

The locust frontal ganglion (FG) constitutes a major source of innervation to the foregut dilator muscles and thus plays a key role in control of foregut movements. This paper reviews our recent studies on the generation and characteristics of FG motor outputs in two distinct and fundamental locust behaviors: feeding and molting. In an in vitro preparation, isolated from all descending and sensory inputs, the FG was spontaneously active and generated rhythmic multi-unit bursts of action potentials, which could be recorded from all efferent nerves.

View Article and Find Full Text PDF

In the desert locust, Schistocerca gregaria, the frontal ganglion (FG) plays a key role in control of foregut movements, and constitutes a source of innervation to the foregut dilator muscles. In this work we studied the generation and characteristics of FG motor outputs in two distinct and fundamental behaviours: feeding and moulting. The FG motor pattern was found to be complex, and strongly dependent on the locust's physiological and behavioural state.

View Article and Find Full Text PDF

The frontal ganglion (FG) is part of the insect stomatogastric nervous system and is found in most insect orders. Previous work has shown that in the desert locust, Schistocerca gregaria, the FG constitutes a major source of innervation to the foregut. In an in vitro preparation, isolated from all descending and sensory inputs, the FG spontaneously generated rhythmic multi-unit bursts of action potentials that could be recorded from all its efferent nerves.

View Article and Find Full Text PDF