Background: Improving lung cancer risk assessment is required because current early-detection screening criteria miss most cases. We therefore examined the utility for lung cancer risk assessment of a DNA Repair score obtained from OGG1, MPG, and APE1 blood tests. In addition, we examined the relationship between the level of DNA repair and global gene expression.
View Article and Find Full Text PDFTranslesion DNA synthesis (TLS) is a DNA damage tolerance mechanism carried out by low-fidelity DNA polymerases that bypass DNA lesions, which overcomes replication stalling. Despite the miscoding nature of most common DNA lesions, several of them are bypassed in mammalian cells in a relatively accurate manner, which plays a key role maintaining a low mutation load. Whereas it is generally agreed that TLS across the major UV and sunlight induced DNA lesion, the cyclobutane pyrimidine dimer (CPD), is accurate, there were conflicting reports on whether the same is true for the thymine-thymine pyrimidine-pyrimidone(6-4) ultraviolet light photoproduct (TT6-4PP), which represents the second most common class of UV lesions.
View Article and Find Full Text PDFThe key role of DNA repair in removing DNA damage and minimizing mutations makes it an attractive target for cancer risk assessment and prevention. Here we describe the development of a robust assay for apurinic/apyrimidinic (AP) endonuclease 1 (APE1; APEX1), an essential enzyme involved in the repair of oxidative DNA damage. APE1 DNA repair enzymatic activity was measured in peripheral blood mononuclear cell protein extracts using a radioactivity-based assay, and its association with lung cancer was determined using conditional logistic regression with specimens from a population-based case-control study with 96 lung cancer cases and 96 matched control subjects.
View Article and Find Full Text PDFDNA repair is a major mechanism for minimizing mutations and reducing cancer risk. Here, we present the development of reproducible and specific enzymatic assays for methylpurine DNA glycosylase (MPG) repairing the oxidative lesions 1,N6-ethenoadenine (εA) and hypoxanthine (Hx) in peripheral blood mononuclear cells protein extracts. Association of these DNA repair activities with lung cancer was determined using conditional logistic regression with specimens from a population-based case-control study with 96 lung cancer cases and 96 matched control subjects.
View Article and Find Full Text PDFDNA repair is a prime mechanism for preventing DNA damage, mutation, and cancers. Adopting a functional approach, we examined the association with lung cancer risk of an integrated DNA repair score, measured by a panel of three enzymatic DNA repair activities in peripheral blood mononuclear cells. The panel included assays for AP endonuclease 1 (APE1), 8-oxoguanine DNA glycosylase (OGG1), and methylpurine DNA glycosylase (MPG), all of which repair oxidative DNA damage as part of the base excision repair pathways.
View Article and Find Full Text PDFOnly a minority of smokers develop lung cancer, possibly due to genetic predisposition, including DNA repair deficiencies. To examine whether inter-individual variations in DNA repair activity of N-methylpurine DNA glycosylase (MPG) are associated with lung cancer, we conducted a blinded, population-based, case-control study with 100 lung cancer case patients and 100 matched control subjects and analyzed the data with conditional logistic regression. All statistical tests were two-sided.
View Article and Find Full Text PDFEfficient DNA repair mechanisms comprise a critical component in the protection against human cancer, as indicated by the high predisposition to cancer of individuals with germ-line mutations in DNA repair genes. This includes biallelic germ-line mutations in the MUTYH gene, encoding a DNA glycosylase that is involved in the repair of oxidative DNA damage, which strongly predispose humans to a rare hereditary form of colorectal cancer. Extensive research efforts including biochemical, enzymological and genetic studies in model organisms established that the oxidative DNA lesion 8-oxoguanine is mutagenic, and that several DNA repair mechanisms operate to prevent its potentially mutagenic and carcinogenic outcome.
View Article and Find Full Text PDFWhile the role of reduced DNA repair in susceptibility to hereditary cancers is well established, its role in sporadic cancer is less understood. One of the reasons is the lack of specific DNA repair assays that are suitable for epidemiology studies. Here we describe the development of the OGG test, an epidemiology-grade enzymatic assay for the activity of the base excision repair enzyme 8-oxoguanine DNA glycosylase, in protein extracts prepared from human blood cells.
View Article and Find Full Text PDFStudies on the carotenoid-overaccumulating structures in chromoplasts have led to the characterization of proteins termed plastid lipid-associated proteins (PAPs), involved in the sequestration of hydrophobic compounds. Here we characterize the PAP CHRD, which, based on sequence homology, belongs to a highly conserved group of proteins, YER057c/YjgF/UK114, involved in the regulation of basic and vital cellular processes in bacteria, yeast and animals. Two nuclear genes were characterized in tomato plants: one (LeChrDc) is constitutively expressed in various tissues and the other (LeChrDi) is induced by stress in leaves and is upregulated by developmental cues in floral tissues.
View Article and Find Full Text PDFChromoplastogenesis during flower development and fruit ripening involves the dramatic overaccumulation of carotenoids sequestered into structures containing lipids and proteins called plastid lipid-associated proteins (PAPs). CHRC, a cucumber (Cucumis sativus) PAP, has been suggested to be transcriptionally activated in carotenoid-accumulating flowers by gibberellin (GA). Mybys, a MYB-like trans-activator identified here, may represent a chromoplastogenesis-related factor: Its expression is flower specific and parallels that of ChrC during flower development; moreover, as revealed by stable ectopic and transient-expression assays, it specifically trans-activates ChrC promoter in flowers accumulating carotenoids and flavonoids.
View Article and Find Full Text PDFAutofluorescent protein tags represent one of the major and, perhaps, most powerful tools in modern cell biology for visualization of various cellular processes in vivo. In addition, advances in confocal microscopy and the development of autofluorescent proteins with different excitation and emission spectra allowed their simultaneous use for detection of multiple events in the same cell. Nevertheless, while autofluorescent tags are widely used in plant research, the need for a versatile and comprehensive set of vectors specifically designed for fluorescent tagging and transient and stable expression of multiple proteins in plant cells from a single plasmid has not been met by either the industrial or the academic communities.
View Article and Find Full Text PDF