We present a unifying approach that describes both surface bending and fracture in the same geometrical framework. An immediate outcome of this view is a prediction for a new mechanical transition: the buckling-fracture transition. Using responsive gel strips that are subjected to nonuniform osmotic stress, we show the existence of the transition: Thin plates do not fracture.
View Article and Find Full Text PDFWe present the first quantitative measurements of shape and energy variation in non-Euclidean plates. Using environmentally responsive gel, we construct non-Euclidean disks of constant imposed Gaussian curvature, K(tar). We vary the disks' thickness t(0) and measure the dependence of configurations, surface curvature, and energy content on t(0).
View Article and Find Full Text PDFThe connection between a surface's metric and its Gaussian curvature (Gauss theorem) provides the base for a shaping principle of locally growing or shrinking elastic sheets. We constructed thin gel sheets that undergo laterally nonuniform shrinkage. This differential shrinkage prescribes non-Euclidean metrics on the sheets.
View Article and Find Full Text PDFProtein expression is a stochastic process that leads to phenotypic variation among cells. The cell-cell distribution of protein levels in microorganisms has been well characterized but little is known about such variability in human cells. Here, we studied the variability of protein levels in human cells, as well as the temporal dynamics of this variability, and addressed whether cells with higher than average protein levels eventually have lower than average levels, and if so, over what timescale does this mixing occur.
View Article and Find Full Text PDFWe examined cell cycle-dependent changes in the proteome of human cells by systematically measuring protein dynamics in individual living cells. We used time-lapse microscopy to measure the dynamics of a random subset of 20 nuclear proteins, each tagged with yellow fluorescent protein (YFP) at its endogenous chromosomal location. We synchronized the cells in silico by aligning protein dynamics in each cell between consecutive divisions.
View Article and Find Full Text PDF