Publications by authors named "Yael Gutierrez"

We report the first application of broadband time-resolved pump-probe ellipsometry to study the ultrafast dynamics of the photoinduced insulator-to-metal transition (IMT) in vanadium dioxide (VO) thin films driven by 35 fs laser pulses. This novel technique enables the direct measurement of the time-resolved evolution of the complex pseudodielectric function of VO during the IMT. We have identified distinct thermal and nonthermal dynamics in the photoinduced IMT, which critically depends on the pump wavelength and fluence, while providing a detailed temporal and spectral phase map.

View Article and Find Full Text PDF

The gallium monochalcogenides family, comprising gallium sulfide (GaS), gallium selenide (GaSe), and gallium telluride (GaTe), is capturing attention for its applications in energy storage and production, catalysis, photonics, and optoelectronics. This interest originates from their properties, which include an optical bandgap larger than those of most common transition metal dichalcogenides, efficient light absorption, and significant carrier mobility. For any application, stability to air exposure is a fundamental requirement.

View Article and Find Full Text PDF

All-dielectric metasurfaces are a blooming field with a wide range of new applications spanning from enhanced imaging to structural color, holography, planar sensors, and directionality scattering. These devices are nanopatterned structures of sub-wavelength dimensions whose optical behavior (absorption, reflection, and transmission) is determined by the dielectric composition, dimensions, and environment. However, the functionality of these metasurfaces is fixed at the fabrication step by the geometry and optical properties of the dielectric materials, limiting their potential as active reconfigurable devices.

View Article and Find Full Text PDF

Hot-carrier based photodetectors and enhanced by surface plasmons (SPs) hot-electron injection into semiconductors, are drawing significant attention. This photodetecting strategy yields to narrowband photoresponse while enabling photodetection at sub-bandgap energies of the semiconductor materials. In this work, we analyze the design of a reconfigurable photodetector based on a metal-semiconductor (MS) configuration with interdigitated dual-comb Au electrodes deposited on the semiconducting SbS phase-change material.

View Article and Find Full Text PDF
Article Synopsis
  • Interest in gallium monosulfide (GaS) is increasing because it has a unique band gap that fits between 2D transition metal dichalcogenides and insulating materials, making it promising for various applications.
  • The study combines theoretical and experimental methods to investigate the dielectric function of crystalline 2H-GaS, utilizing techniques like spectroscopic imaging ellipsometry and first principle calculations.
  • The findings help to validate GaS's optical properties, providing valuable insights for developing new optoelectronic and photonic devices leveraging this low-dimensional material.
View Article and Find Full Text PDF

Antimony sulfide, SbS, is interesting as the phase-change material for applications requiring high transmission from the visible to telecom wavelengths, with its band gap tunable from 2.2 to 1.6 eV, depending on the amorphous and crystalline phase.

View Article and Find Full Text PDF

From the group-III monochalcogenide (MX, M  =  Ga, In; X  =  S, Se, Te) layered semiconductors, gallium monosulfide, GaS, has emerged as a promising material for electronics, optoelectronics, and catalysis applications. In this work, GaS samples of various thicknesses in the range from 38 to 1665 nm have been obtained by mechanical exfoliation to study the interplay between structural, morphological, optical, and photoresponsivity properties as a function of thickness. This interplay has been established by analyzing the structure through Raman spectroscopy and X-ray diffraction, the morphology through scanning electron microscopy and atomic force microscopy, the density and optical properties through spectroscopic ellipsometry, and the photoresponsivity through current-voltage measurements under UV light.

View Article and Find Full Text PDF

Group III layered monochalcogenide gallium sulfide, GaS, is one of the latest additions to the two-dimensional (2D) materials family, and of particular interest for visible-UV optoelectronic applications due to its wide bandgap energy in the range 2.35-3.05 eV going from bulk to monolayer.

View Article and Find Full Text PDF

Hydrogen is the key element to accomplish a carbon-free based economy. Here, the first evidence of plasmonic gallium (Ga) nanoantennas is provided as nanoreactors supported on sapphire (α-Al O ) acting as direct plasmon-enhanced photocatalyst for hydrogen sensing, storage, and spillover. The role of plasmon-catalyzed electron transfer between hydrogen and plasmonic Ga nanoparticle in the activation of those processes is highlighted, as opposed to conventional refractive index-change-based sensing.

View Article and Find Full Text PDF

Low-loss dielectric nanomaterials are being extensively studied as novel platforms for enhanced light-matter interactions. Dielectric materials are more versatile than metals when nanostructured as they are able to generate simultaneously electric- and magnetic-type resonances. This unique property gives rise to a wide gamut of new phenomena not observed in metal nanostructures such as directional scattering conditions or enhanced optical chirality density.

View Article and Find Full Text PDF

Sulfur hexafluoride (SF) is one of the most harmful greenhouse gases producing environmental risks. Therefore, developing ways of degrading SF without forming hazardous products is increasingly important. Herein, we demonstrate for the first time the plasmon-catalytic heterogeneous degradation of SF into nonhazardous MgF and MgSO products by nontoxic and sustainable plasmonic magnesium/magnesium oxide (Mg/MgO) nanoparticles, which are also effective as a plasmon-enhanced SF chemometric sensor.

View Article and Find Full Text PDF

Magnesium-based films and nanostructures are being studied in order to improve hydrogen reversibility, storage capacity, and kinetics, because of their potential in the hydrogen economy. Some challenges with magnesium (Mg) samples are their unavoidable oxidation by air exposure and lack of direct in situ real time measurements of hydrogen interaction with Mg and MgO surfaces and Mg plasmonic nanoparticles. Given these challenges, the present article investigates direct interaction of Mg with hydrogen, as well as implications of its inevitable oxidation by real-time spectroscopic ellipsometry for exploiting the optical properties of Mg, MgH and MgO.

View Article and Find Full Text PDF

In plasmon-enhanced heterogeneous catalysis, illumination accelerates reaction rates by generating hot carriers and hot surfaces in the constituent nanostructured metals. In order to understand how photogenerated carriers enhance the nonthermal reaction rate, the effects of photothermal heating and thermal gradients in the catalyst bed must be confidently and quantitatively characterized. This is a challenging task considering the conflating effects of light absorption, heat transport, and reaction energetics.

View Article and Find Full Text PDF

For applications of surface-enhanced spectroscopy and photocatalysis, the ultraviolet (UV) plasmonic behavior and charge distribution within rhodium nanocubes is explored by a detailed numerical analysis. The strongest plasmonic hot-spots and charge concentrations are located at the corners and edges of the nanocubes, exactly where they are the most spectroscopically and catalytically active. Because intense catalytic activity at corners and edges will reshape these nanoparticles, distortions of the cubical shape, including surface concavity, surface convexity, and rounded corners and edges, are also explored to quantify how significantly these distortions deteriorate their plasmonic and photocatalytic properties.

View Article and Find Full Text PDF

High Refractive Index (HRI) dielectric nanoparticles have been proposed as an alternative to metallic ones due to their low absorption and magnetodielectric response in the VIS and NIR ranges. For the latter, important scattering directionality effects can be obtained. Also, systems constituted by dimers of HRI dielectric nanoparticles have shown to produce switching effects by playing with the polarization, frequency or intensity of the incident radiation.

View Article and Find Full Text PDF

The ultraviolet (UV) range presents new challenges for plasmonics, with interesting applications ranging from engineering to biology. In previous research, gallium, aluminum, and magnesium were found to be very promising UV plasmonic metals. However, a native oxide shell surrounds nanostructures of these metals that affects their plasmonic response.

View Article and Find Full Text PDF

The influence of increasing the core size of Ag-Si core-shell nanoparticles has been investigated by using the values of the linear polarization degree at a right-angle scattering configuration, [Formula: see text]. Changes in dipolar resonances and scattering directionality conditions as a function of the core radius (R int) for a fixed shell size ([Formula: see text] nm) have been analysed. An empirical formula to obtain the ratio [Formula: see text] by monitoring the influence of the magnetic dipolar resonance in [Formula: see text] has been found.

View Article and Find Full Text PDF

The ability to infer near-field scattering properties from far-field measurements is of paramount importance in nano-optics. Recently we derived an approximate formula for predicting the frequency shift between near- and far-field intensity peaks in the case of a dielectric sphere. In this work we demonstrate that almost an identical formula can be used to predict the resonance shift of a dielectric cylinder and a perfectly conducting cylinder.

View Article and Find Full Text PDF

Polydisperse rhodium nanoparticles have recently shown promise for ultraviolet (UV) plasmonics, but controlling the size and morphology of metal nanoparticles is essential for tuning surface plasmon resonances. Here we report the use of slow-injection polyol methods to synthesize monodisperse Rh nanocubes with unprecedentedly large sizes and slightly concave faces. The associated local surface plasmon resonances (LSPRs) red-shifted with increasing sizes in the UV region from deep UV to around 400 nm, consistent with numerical simulations.

View Article and Find Full Text PDF

The near-field electromagnetic scattering intensity resonances are redshifted in frequency with respect to their far-field counterparts. We derive simple, approximate, analytical formulas for this shift in the case of a plane wave interacting with a dielectric sphere. Numerical results comparing the approximate formulas to the numerically exact solutions show that the two are in good agreement.

View Article and Find Full Text PDF