Publications by authors named "Yadong Gong"

The quality of Recombination signal sequences (RSSs), location, and genetics of mammalian V, D, and J genes synergistically affect the recombination frequency of genes; however, the specific regulatory mechanism and efficiency have not been elucidated. By taking advantage of single-cell RNA-sequencing (scRNA-seq) and high-throughput sequencing (HTS) to investigate V(D)J rearrangement characteristics in the CDR3 repertoire, we found that the distal and proximal V genes (or J genes) "to D" gene were involved in rearrangement significantly more frequently than the middle V genes (or J genes) in the TRB locus among various species, including Primates (human and rhesus monkey), Rodentia (BALB/c, C57BL/6, and Kunming mice), Artiodactyla (buffalo), and Chiroptera (Rhinolophus affinis). The RSS quality of the V and J genes affected their frequency in rearrangement to varying degrees, especially when the V-RSSs with recombination signal information content (RIC) score < -45 significantly reduced the recombination frequency of the V gene.

View Article and Find Full Text PDF

Background: The pathogenesis of juvenile idiopathic arthritis (JIA) is strongly influenced by an impaired immune system. However, the molecular mechanisms underlying its development and progression have not been elucidated. In this study, the computational methods TRUST4 were used to construct a T-cell receptor (TCR) and B-cell receptor (BCR) repertoire from the peripheral blood of JIA patients bulk RNA-seq data, after which the clonality and diversity of the immune repertoire were analyzed.

View Article and Find Full Text PDF

To investigate the micro-grinding process and performance of 2.5D C/SiC composites and 2.5D SiC/SiC composites in depth, single-factor micro-grinding experiments were conducted by using SiC ceramics as a comparison.

View Article and Find Full Text PDF

Tool wear introduced during grinding nickel-based superalloys was identified as a significant factor affecting the production quality of aero-engine industries concerning high service performance and high precision. Moreover, uncertainties derived from the various cooling-lubrication modes used in grinding operations complicated the assessment of grinding preformation. Therefore, this work investigated the tool wear mechanisms in grinding nickel-based superalloys that adopted five cooling-lubrication modes and investigated how the wear behaviors affected grinding performance.

View Article and Find Full Text PDF

The practical Kramers-Kronig (KK) receiver has been a competitive receiving technique in the data-center, medium reach, and even long-haul metropolitan networks. Nevertheless, an extra digital resampling operation is required at both ends of the KK field reconstruction algorithm due to the spectrum broadening caused by adopting the nonlinear function. Generally, the digital resampling function can be implemented by using linear interpolation (LI-ITP), the Lagrange cubic interpolation (LC-ITP), the spline cubic interpolation (SC-ITP), time-domain anti-aliasing finite impulse response (FIR) filter method (TD-FRM) scheme, and fast Fourier transform (FFT)-based scheme.

View Article and Find Full Text PDF

Stelite-6/Inconel 718 functionally gradient materials (FGM) is a heat-resisting functional gradient material with excellent strength performance under ultra-high temperatures (650-1100 °C) and, thus, has potential application in aeronautic and aerospace engineering such as engine turbine blade. To investigate the effect of initial temperature on the microstructure and properties of laser metal deposition (LMD) functional gradient material (FGM), this paper uses the LMD technique to form Stelite-6/Inconel 718 FGM at two different initial temperatures: room temperature and preheating (300 °C). Analysis of the internal residual stress distribution, elemental distribution, microstructure, tensile properties, and microhardness of 100% Stelite-6 to 100% Inconel 718 FGM formed at different initial temperatures in a 10% gradient.

View Article and Find Full Text PDF

Objective: Driver gene mutation in lung adenocarcinoma patients in Zunyi and its relationship with clinical features were probed in this investigation.

Methods: In total, with 244 patients with lung adenocarcinoma as study subjects, including 141 males and 103 females, amplification-refractory mutation system-polymerase chain reaction (ARMS-PCR) was utilized for detecting multigene mutations. Subsequently, the relationship between gene mutation and clinical characteristics was analyzed.

View Article and Find Full Text PDF
Article Synopsis
  • The brittle Laves phase in Inconel 718 parts produced through laser metal deposition (LMD) hampers their engineering applications, prompting the need for research on laser remelting (LR) to reduce this issue.
  • Different laser scanning speeds in the LR process significantly influenced the microstructure, phase composition, and hardness of the materials, with slower speeds leading to continuous growth of columnar dendrites and faster speeds refining the Laves phase.
  • Results showed that matching the laser scanning speeds of LMD and LR led to a 22.4% reduction in Laves phase content and a decrease in dendrite spacing, while hardness differences between the LMD and LMD + LR layers were minimal at 12.4 HV.
View Article and Find Full Text PDF

Aluminum alloy material is widely used in the electronics, weapons, aviation and aerospace industries, due to its medium strength, good corrosion resistance, good toughness and excellent oxidation properties. With the trend of product miniaturization, micro cutting has become the mainstream technique for fabricating micro parts and components, so it is very meaningful and vital to work on removing the cutting fluid from the micro cutting process and make it totally sustainable and eco-friendly. In this work, an attempt has been made to fabricate micro textures onto the rear surface of helical micro end mills with diameters of less than 1 mm.

View Article and Find Full Text PDF
Article Synopsis
  • - The study aimed to understand the gene mutations linked to multidrug-resistance (MDR) in tuberculosis patients with diabetes in Zunyi, analyzing data from 763 TB-positive individuals.
  • - Researchers identified that drug resistance mutations affected a significant number of patients, with specific mutation rates differing between those with just TB and those with diabetes-associated TB.
  • - Key findings highlighted that MDR-TB patients mainly had mutations at the ropB531 and ropBS531L sites, while diabetes patients showed a higher likelihood of mutations at the inhA15M site and also had mutations at KatG315N.
View Article and Find Full Text PDF

This paper addresses a comprehensive and further insight into the sensitivity of material removal and the surface defect formation mechanism to scratch depth during single-grit scratch tests of 50 vol% SiCp/Al composites. The three-dimensional (3D) finite element model with more realistic 3D micro-structure, particle-matrix interfacial behaviors, particle-particle contact behaviors, particle-matrix contact behaviors and a Johnson-Holmquist-Beissel (JHB) model of SiC was developed. The scratch simulation conducted at scratch velocity 10 mm/min and loading rate 40 N/min revealed that the scratch depth plays a crucial role in material removal and the surface forming process.

View Article and Find Full Text PDF

Type 2 diabetes mellitus is often companied with osteoporosis, a process which involves osteoclast activation. In this study, we found tubeimoside I, a natural compound isolated from the Chinese medicinal herb Bolbostemma paniculatum (Maxim) Franquet (Cucurbitaceae), significantly ameliorated the decrease of bone mass in type 2 diabetes-induced osteoporosis in rats. It appears that tubeimoside I exerts this protecting effect through inhibiting osteoclast formation and function.

View Article and Find Full Text PDF

Micro-milling is an emerging processing technology for machining micro- and high-precision three dimensional parts that require the use of various materials (with sizes ranging from tens of micrometers to a few millimeters) in the field of advanced manufacturing. Therefore, it can be applied to manufacture the micro parts, but new challenges are raised about parts with high surface quality. Herein, both surface formation and micro machined surface roughness models are studied, with the aim of solving complicated problems regarding the quality of surface finish when micro-milling metallic materials.

View Article and Find Full Text PDF