To investigate the sealing capability of mudstone caprock during the evolution of organic matter (OM)-rich mudstone, a series of hydrous pyrolysis experiments were first conducted to examine the impact of hydrocarbon generation. The pore type, pore structure, porosity, and gas breakthrough pressure of pyrolytic residual samples were analyzed by field emission scanning electron microscopy, low pressure nitrogen adsorption measurements, porosimetry, and gas breakout core experiments. To model the environment at different depths, these six experiments on hydrous pyrolysis were performed at different temperatures, lithostatic pressures, and hydrodynamic pressures, while other experimental factors such as the original sample, heating time, and rate were kept constant.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
May 2023
We used magnesium slag (MS) as a calcium source for modifying coal gasification coarse slag (CGCS) in the presence of NaOH to prepare a novel phosphate adsorbent (MS-CGCS). CaSiO in MS reacts with NaOH during the high-temperature synthesis process, with sodium displacing a part of the calcium content in CaSiO and entering the mineral lattice to form NaCaSiO. Hydroxide ions reacted with calcium in CaSiO to generate Ca(OH) and decomposed into CaO at a high temperature.
View Article and Find Full Text PDFReservoir quality is a critical risk factor in basement reservoirs. Researches into basement reservoirs by petrographic analysis combined with X-ray diffraction, log identification, electron microscopy, field emission scanning electron microscopy, porosity and pulse-decay permeability and core analysis have provided insights into the characterization of the commonality, diversity and difference of the weathered basement rocks as gas reservoirs in the Dongping field. Geological structures, lithology and near-surface processes control the reservoir physical property together.
View Article and Find Full Text PDF