Although biomass-based alternatives for the manufacturing of bioplastic films are an important aspect of a more sustainable future, their physicochemical properties need to be able to compete with the existing market to establish them as a viable alternative. One important factor that is often neglected is the long-term stability of renewables-based functional materials, as they should neither degrade after a day or week, nor last forever. One material showing high potential in this regard, also due to its intrinsic biodegradability and antibacterial properties, is chitosan, which can form stable, self-standing films.
View Article and Find Full Text PDFPorous solids often contain complex pore networks with pores of various sizes. Tracking individual fluorescent probes as they diffuse through porous materials can be used to characterize pore networks at tens of nanometers resolution. However, understanding the motion behavior of fluorescent probes in confinement is crucial to reliably derive pore network properties.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
February 2022
Dual-fluorescence carbon dots have great potential as nanosensors in life and materials sciences. Such carbon dots can be obtained via a solvothermal synthesis route with glutathione and formamide. In this work, we show that the dual-fluorescence emission of the synthesis products does not originate from a single carbon dot emitter, but rather from a mixture of physically separate compounds.
View Article and Find Full Text PDFDespite the huge contribution of membrane-based brine and wastewater purification systems in today's life, biofouling still affects sustainability of membrane engineering. Aimed at reducing membrane modules wastage, the need to study biofouling monitoring as one of contributory factors stemmed from the short time between initial attachment and irreversible biofoulant adhesion. Hence, a membrane for monitoring is introduced to determine the right cleaning time by using fluorescent sensing as a non-destructive and scalable approach.
View Article and Find Full Text PDFEuropium-doped yttrium oxide nanoparticles (Y2 O3 :Eu NPs) modified by captopril were prepared in aqueous solution. In this study, we report the effect of pyridoxine hydrochloride on the photoluminescence intensity of Y2 O3 :Eu NPs in pH 7.2 buffer solution.
View Article and Find Full Text PDFDetermination of molecules and biomolecules using nanoparticles is promising in the development of analytical techniques. Modified Eu-doped Y2O3 nanoparticles (Y2O3:Eu NPs) by captopril have been used as a probe for thiamine (vitamin B1) determination. According to the fluorescence enhancement of modified Eu-doped Y2O3 nanoparticles caused by thiamine, a simple and sensitive method were proposed for its detection.
View Article and Find Full Text PDF