Publications by authors named "Yadian Zeng"

Mold contamination poses a significant challenge in the processing and storage of Chinese herbal medicines (CHM), leading to quality degradation and reduced efficacy. To address this issue, we propose a rapid and accurate detection method for molds in CHM, with a specific focus on , using electronic nose (e-nose) technology. The proposed method introduces an eccentric temporal convolutional network (ETCN) model, which effectively captures temporal and spatial information from the e-nose data, enabling efficient and precise mold detection in CHM.

View Article and Find Full Text PDF