Permanent structural changes in pure metals that are caused by plastic activity are normally irreparable after unloading. Because of the lack of experimental evidence, it is unclear whether the plastic activity can be repaired as the size of the pure metals decreases to several nanometers; it is also unclear how the metals accommodate the plastic deformation. In this study, the atomic-scale loading and unloading of ∼2 nm Ag nanocrystals was investigated, and three modes of plastic deformation were observed: (i) the phase transition from the face-centered cubic (fcc) phase to the hexagonal close-packed (hcp) phase, (ii) stacking faults, and (iii) deformation twin nucleation.
View Article and Find Full Text PDFLow Earth orbit satellite constellation networks (LSCNs) have attracted significant attention around the world due to their great advantages of low latency and wide coverage, but they also bring new challenges to network security. Distributed denial of service (DDoS) attacks are considered one of the most threatening attack methods in the field of Internet security. In this paper, a space-time graph model is built to identify the key nodes in LSCNs, and a DDoS attack is adopted as the main means to attack the key nodes.
View Article and Find Full Text PDFRevealing the atomistic mechanisms for the high-temperature mechanical behavior of materials is important for optimizing their properties for service at high-temperatures and their thermomechanical processing. However, due to materials microstructure's dynamic recovery and the absence of available in situ techniques, the high-temperature deformation behavior and atomistic mechanisms of materials are difficult to evaluate. Here, we report the development of a microelectromechanical systems-based thermomechanical testing apparatus that enables mechanical testing at temperatures reaching 1556 K inside a transmission electron microscope for in situ investigation with atomic-resolution.
View Article and Find Full Text PDF