Background: Childhood undernutrition is a major global health challenge with devastating lifelong consequences. Linear growth stunting due to undernutrition has been linked to poor health outcomes, and mothers who experience growth stunting in childhood are more likely to give birth to stunted children later in life. Based on these findings, we hypothesized that intergenerational colonization of mice with microbiota from human donors with undernutrition may recapitulate certain immune and growth changes observed in this disorder.
View Article and Find Full Text PDFChildhood undernutrition is a major global health challenge with devastating lifelong consequences. Linear growth stunting due to undernutrition has been linked to poor outcomes, and mothers who experience stunting are more likely to give birth to stunted children. Murine models that capture the intergenerational and multifactorial nature of undernutrition are critical to understanding the underlying biology of this disorder.
View Article and Find Full Text PDFIn a recent report in Science, Schwarzer and colleagues demonstrate the growth benefits of treatment with Lactiplantibacillus plantarum strain WJL in a preclinical mouse model of chronic undernutrition. L. plantarum influences the somatotropic axis to promote growth through intestinal epithelial NOD2 sensing.
View Article and Find Full Text PDF