E-cadherin (CDH1) is involved in maintaining cell-cell adhesions in embryonic stem cells (ESCs). However, its function in the context of cell fate decisions is largely unknown. Using mouse ESCs (mESCs), we demonstrate that E-cadherin and β-catenin interact at the membrane and continue to do so upon internalization within the cell.
View Article and Find Full Text PDFEndocytosis is implicated in the maintenance of embryonic stem cell (ESC) pluripotency, although its exact role and the identity of molecular players remain poorly understood. Here, we show that the clathrin heavy chain (CLTC), involved in clathrin-mediated endocytosis (CME), is vital for maintaining mouse ESC (mESC) pluripotency. Knockdown of Cltc resulted in a loss of pluripotency accompanied by reduced E-cadherin (E-CAD) levels and increased levels of transforming growth factor β (TGF-β) and extracellular signal-regulated kinase (ERK) signaling.
View Article and Find Full Text PDF