In the post-COVID-19 era, drug-resistant bacterial infections emerge as one of major death causes, where multidrug-resistant Acinetobacter baumannii (MRAB) and drug-resistant Pseudomonas aeruginosa (DRPA) represent primary pathogens. However, the classical antibiotic strategy currently faces the bottleneck of drug resistance. We develop an antimicrobial strategy that applies the selective delivery of CRISPR/Cas9 plasmids to pathogens with biomimetic cationic hybrid vesicles (BCVs), irrelevant to bacterial drug resistance.
View Article and Find Full Text PDFBackground: Polycystic ovary syndrome (PCOS) is a common complication of autoimmune thyroiditis (AIT) in women, but the underlying mechanism remains unclear. Protein disulfide isomerase A3 (PDIA3) is a ubiquitous protein. We have reported that PDIA3 autoantibody (PDIA3Ab) production results from autoimmune responses against thyrocytes, resulting in its high expression in euthyroid AIT patients.
View Article and Find Full Text PDFThe scavenging of the excess reactive oxygen species (ROS) induced by radiation is fundamental for radiation protection. However, directly applying antioxidants results in low bioavailability and side effects. Superoxide dismutase (SOD) and catalase (CAT) have high ROS clearance efficiency, whereas their application is limited by the enzyme inactivation, making it difficult to exhibit significant therapeutic effects.
View Article and Find Full Text PDFIntroduction: During sepsis, the kidney is one of the most vulnerable organs. Sepsis-associated acute kidney injury (S-AKI) is hallmarked by renal inflammation, apoptosis, and oxidative injury. Ginsenoside Rg1 (Rg1) is a natural product that possesses abundant pharmacological actions and protects against many sepsis-related diseases.
View Article and Find Full Text PDFOver geological time scales, continental silicate weathering is considered as a critical carbon sink that regulates long-term climate feedback. By contrast, recent studies indicate that sulfide oxidation during weathering can be as a potential carbon source. However, whether chemical weathering in glacial conditions characterized by extreme erosion is a net carbon sink or source remains elusive.
View Article and Find Full Text PDFBackground: Pulmonary arterial hypertension (PAH) is a complex pulmonary vasculature disease characterized by progressive obliteration of small pulmonary arteries and persistent increase in pulmonary vascular resistance, resulting in right heart failure and death if left untreated. Artemisinin (ARS) and its derivatives, which are common antimalarial drugs, have been found to possess a broad range of biological effects. Here, we sought to determine the therapeutic benefit and mechanism of ARS and its derivatives treatment in experimental pulmonary hypertension (PH) models.
View Article and Find Full Text PDFFront Cell Dev Biol
August 2021
Objectives: HIF2α is of vital importance in the regulation of endothelial dysfunction, cell proliferation, migration, and pulmonary vascular remodeling in pulmonary hypertension. Our previous studies demonstrated that conditional and inducible deletion of HIF2α in mouse lung endothelial cells, dramatically protected the mice against vascular remodeling and the development of pulmonary arterial hypertension (PAH). Here, we provide a novel transcriptome insight into the impact of HIF2α in PAH pathogenesis and the potential to use HIF2α-mediated gene sets to differentiate PAH human subjects.
View Article and Find Full Text PDF