This work aims at exploring an antagonistic actinobacterial strain isolated from the roots of Ziziphus lotus in bioformulation processes and the biocontrol of Rhizoctonia solani damping-off of tomato seedlings. The strain Streptomyces caeruleatus ZL-2 was investigated for the principal in vitro biocontrol mechanisms and then formulated in three different biofungicides: wettable talcum powder (WTP), sodium alginate propagules (SAP) and clay sodium alginate propagules (CAP). Compared to a marketed control products (Serenade® and Acil 060FS®), the formulated biofungicides were investigated against the R.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2021
The use of halotolerant beneficial plant-growth-promoting (PGP) bacteria is considered as a promising eco-friendly approach to improve the salt tolerance of cash crops. One strategy to enhance the possibility of obtaining stress-alleviating bacteria is to screen salt impacted soils. In this study, amongst the 40 endophytic bacteria isolated from the roots of Sahara-inhabiting halophytes Atriplex halimus L.
View Article and Find Full Text PDFAn actinomycete strain named IA1, which produced an antimicrobial compound, was isolated from a Saharan soil in In Amenas, Algeria. The study of the 16S rDNA sequence of this strain permitted to relate it to Streptomyces mutabilis NBRC 12800(T) (99.93% of similarity).
View Article and Find Full Text PDFThirty-four endophytic actinomycetes were isolated from the roots of native plants of the Algerian Sahara. Morphological and chemical studies showed that twenty-nine isolates belonged to the Streptomyces genus and five were non-Streptomyces. All isolates were screened for their in vitro antifungal activity against Rhizoctonia solani.
View Article and Find Full Text PDFTwenty-seven endophytic actinomycete strains were isolated from five spontaneous plants well adapted to the poor sandy soil and arid climatic conditions of the Algerian Sahara. Morphological and chemotaxonomical analysis indicated that twenty-two isolates belonged to the Streptomyces genus and the remaining five were non-Streptomyces. All endophytic strains were screened for their ability to produce indole-3-acetic acid (IAA) in vitro on a chemically defined medium.
View Article and Find Full Text PDF