Somatostatin analogues, which are used to treat neuroendocrine tumors, target the high levels of somatostatin receptor subtype 2 (SSTR1; alias sst2) expressed in these cancers. However, some tumors are resistant to somatostatin analogues, and it is unknown whether the defect lies in sst2 activation or downstream signaling events. Because sst2 phosphorylation occurs rapidly after receptor activation, we examined whether sst2 is phosphorylated in neuroendocrine tumors.
View Article and Find Full Text PDFThe somatostatin receptor subtype 2A (sst2A) mediates many of somatostatin's neuroendocrine actions and is the primary therapeutic target for the stable somatostatin analogs used to inhibit hormone secretion by pituitary and gastroenteropancreatic tumors. Two new multireceptor targeting somatostatin analogs currently under clinical investigation, the multisomatostatin receptor agonist cyclo-[diaminoethylcarbamoyl-HydroxyPro-Phenylglycine-D-Trp-Lys-(4-O-benzyl)Tyr-Phe] (SOM230) (Pasireotide) and pan-somatostatin receptor agonist Tyr-cyclo-[D-diaminobutyric acid-Arg-Phe-Phe-D-Trp-Lys-Thr-Phe] (KE108), behave as functionally selective ligands at the sst2A receptor, mimicking some of somatostatin's actions but antagonizing others. Further, SOM230 and KE108 are less able to induce receptor internalization than somatostatin, indicating that they exhibit functional selectivity for receptor regulation as well as signaling.
View Article and Find Full Text PDF