Efforts to tap into the broad antimicrobial, insecticidal, and antioxidant activities of essential oils (EOs) are limited due to their strong odor and susceptibility to light and oxidation. Encapsulation of EOs and subsequent drying overcome these limitations and extend their applications. This study characterized freeze-dried (lyophilized) emulsions of eugenol (EU) and thymol (TY) EOs, encapsulated by chemically unmodified cellulose, a sustainable and low-cost resource.
View Article and Find Full Text PDFIn the quest for alternative renewable energy sources, a new self-assembled hybrid configuration of cellulose-coated oil-in-water emulsion particles with yeast was formed. In this research, the addition of yeasts (S. cerevisiae) to the micro-particle emulsion revealed a novel self-assembly configuration in which the yeast cell is connected to surrounding cellulose-coated micro-particles.
View Article and Find Full Text PDFTomato brown rugose fruit virus (ToBRFV) is a soil-borne virus showing a low percentage of ca. 3% soil-mediated infection when the soil contains root debris from a previous 30-50 day growth cycle of ToBRFV-infected tomato plants. We designed stringent conditions of soil-mediated ToBRFV infection by increasing the length of the pre-growth cycle to 90-120 days, adding a ToBRFV inoculum as well as truncating seedling roots, which increased seedling susceptibility to ToBRFV infection.
View Article and Find Full Text PDFThis research aims to characterize the adsorption morphology of block copolymer dispersants of the styrene-block-4-vinylpyridine family (S4VP) on the surface of multi-walled carbon nanotubes (MWCNT) in a polar organic solvent, ,-dimethyl formamide (DMF). Good, unagglomerated dispersion is important in several applications such as fabricating CNT nanocomposites in a polymer film for electronic or optical devices. Small-angle neutron scattering (SANS) measurements, using the contrast variation (CV) method, are used to evaluate the density and extension of the polymer chains adsorbed on the nanotube surface, which can yield insight into the means of successful dispersion.
View Article and Find Full Text PDFEssential oils (EOs) are volatile natural organic compounds, which possess pesticidal properties. However, they are vulnerable to heat and light, limiting their range of applications. Encapsulation of EOs is a useful approach to overcome some of these limitations.
View Article and Find Full Text PDFLipase-catalyzed transesterification is prevalent in industrial production and is an effective alternative to chemical catalysis. However, due to lipases' unique structure, the reaction requires a biphasic system, which suffers from a low reaction efficiency caused by a limited interfacial area. The use of emulsion particles was found to be an effective way to increase the surface area and activity.
View Article and Find Full Text PDFCellulose is a renewable biopolymer, abundant on Earth, with a multi-level supramolecular structure. There has been significant interest and advancement in utilizing natural cellulose to stabilize emulsions. In our research, we develop and examine oil in water emulsions surrounded by unmodified cellulose as microreactors for the process of transformation of cellulose into valuable chemicals such as biodiesel.
View Article and Find Full Text PDFBlending two gelators with different chemistries (12-hydroxystearic acid and a bis-urea derivative, Millithix MT-800) was used to impart shape stability to CrodaTherm 29, a bio-based phase change material (PCM), melting/crystallizing at near-ambient temperature. The gelators immobilized the PCM by forming an interpenetrating fibrillar network. 15 wt % concentration of the gelators was found to be effective in preventing liquid PCM leakage.
View Article and Find Full Text PDFBinding functional biomolecules to non-biological materials, such as single-walled carbon nanotubes (SWNTs), is a challenging task with relevance for different applications. However, no one has yet undertaken a comparison of the binding of SWNTs to different recombinant filamentous viruses (phages) bioengineered to contain different binding peptides fused to the virus coat proteins. This is important due to the range of possible binding efficiencies and scenarios that may arise when the protein's amino acid sequence is modified, since the peptides may alter the virus's biological properties or they may behave differently when they are in the context of being displayed on the virus coat protein; in addition, non-engineered viruses may non-specifically adsorb to SWNTs.
View Article and Find Full Text PDFBackground: Future expansion of corn-derived ethanol raises concerns of sustainability and competition with the food industry. Therefore, cellulosic biofuels derived from agricultural waste and dedicated energy crops are necessary. To date, slow and incomplete saccharification as well as high enzyme costs have hindered the economic viability of cellulosic biofuels, and while approaches like simultaneous saccharification and fermentation (SSF) and the use of thermotolerant microorganisms can enhance production, further improvements are needed.
View Article and Find Full Text PDFCarbon nanotubes (CNTs) are stiff, all-carbon macromolecules with diameters as small as one nanometer and few microns long. Solutions of CNTs in chlorosulfonic acid (CSA) follow the phase behavior of rigid rod polymers interacting via a repulsive potential and display a liquid crystalline phase at sufficiently high concentration. Here, we show that small-angle X-ray scattering and polarized light microscopy data can be combined to characterize quantitatively the morphology of liquid crystalline phases formed in CNT solutions at concentrations from 3 to 6.
View Article and Find Full Text PDFTwo organogelators of different chemistry (a fatty acid derivative and a -urea derivative), as well as their blends, were used to impart shape stability to a bio-based phase-change material (PCM) bearing a near-ambient phase-transition temperature. Characterization of the individual gelators and their blends revealed their ability to immobilize the PCM by forming a continuous fibrillar network. The fibrils formed by the fatty acid derivative were helical, while the -urea derivative formed smooth fibrils.
View Article and Find Full Text PDFHypothesis: The water absorption capacity of nanocellulose (NC) foam is tailored by crosslinking with polyethyleneimine (PEI) and hexamethylenediamine (HMDA). The interaction of amine groups in PEI and HMDA with the carboxylic groups (COO) of NC affects the foam structure which reduces its swelling capacity.
Experiments: Functionalised NC foams were prepared by TEMPO (2,2,6,6,-tetramethylpiperidine-1-oxyl) oxidation of bleached pulp, followed by fibrillation into a hydrogel, adding a crosslinker and freeze drying the hydrogel into a foam.
Cellulose acetate is one of the most important cellulose derivatives. The use of ionic liquids in cellulose processing was recently found to act both as a solvent and also as a reagent. A recent study showed that cellulose dissolution in the ionic liquid 1-ethyl-3-methylimidazoliumacetate (EMIMAc) mixed with dichloromethane (DCM) resulted in controlled homogenous cellulose acetylation; yielding water-soluble cellulose acetate (WSCA).
View Article and Find Full Text PDFL. silk fibroin (SF) is widely used in different areas due to its ability to form durable and resilient materials with notable mechanical properties. However, in some of these applications the dissolution of SF is required, and this is not often straightforward due to its inability to be dissolved in the majority of common solvents.
View Article and Find Full Text PDFIntermolecular interactions as well as macromolecular conformation affect the rheological and microstructural properties of polyelectrolyte complexes (PECs) solutions. The properties of semi-dilute solutions of weakly charged PECs can be controlled by the degree of ionization and solvent composition. In this work, we examined the effect of ethanol as a co-solvent on PECs composed of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) at low pH.
View Article and Find Full Text PDFNatural cellulose has been used as a coating to stabilize oil-in-water (o/w) emulsions by exploiting the amphiphilic character of the cellulose chains molecularly dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Its cellulose coating exhibits a continuous amorphous structure which differs significantly from the cellulose particle stabilization used in Pickering emulsions. The structure of these cellulose-coated o/w emulsion particles, in particular the cellulose coating shell characteristics (thickness, porosity, and composition), is studied by using a combination of direct imaging methods such as cryogenic electron microscopy and fluorescence microscopy with small-angle neutron scattering measurements.
View Article and Find Full Text PDFBioprocess Biosyst Eng
November 2017
Cellulose is one of the most abundant bio-renewable materials on earth, yet the potential of cellulosic bio-fuels is not fully exploited, primarily due to the high costs of conversion. Hydrogel particles of regenerated cellulose constitute a useful substrate for enzymatic hydrolysis, due to their porous and amorphous structure. This article describes the influence of several structural aspects of the cellulose hydrogel on its hydrolysis.
View Article and Find Full Text PDFUsing direct-imaging cryogenic transmission and scanning electron microscopy, we show different stages of liquid-crystalline phase development in progressively more concentrated solutions of carbon nanotubes in chlorosulfonic acid: a dilute phase of individually dissolved carbon nanotubes; semidilute and concentrated isotropic phases; coexisting concentrated isotropic and nematic phases in local equilibrium with each other; and a fully liquid-crystalline phase. Nanometric resolution of cryogenic electron microscopy reveals carbon nanotube self-assembly into liquid-crystalline domains of several nanometers in width at very early stages. We find significant differences in carbon nanotube liquid-crystalline domain morphology as a function of the carbon nanotube aspect ratio, diameter, and degree of purity.
View Article and Find Full Text PDFThe interaction between amphiphiles and polyelectrolytes has been widely investigated in recent years due to their potential application in industry and medicine, with special focus on gene therapy. The cationic lipid dioleoyl trimethylammonium propane, DOTAP, and the oppositely charged polyelectrolytes, sodium poly(acrylic acid) and sodium poly(styrenesulfonate), form multilamellar complexes in water. Because of the different molecular stiffness of the two polyelectrolytes, they form different nanostructured complexes.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2016
Cellulose hydrogel particles were fabricated from molecularly-dissolved cellulose/IL solutions. The characteristics of the formed hydrogels (cellulose content, particles' size and porosity) were determined as a function of cellulose concentration in the precursor solutions. There is a significant change in the hydrogel structure when the initial cellulose solution concentration increases above about 7-9%wt.
View Article and Find Full Text PDFEvidence is presented for the first time of true molecular dissolution of cellulose in binary mixtures of common polar organic solvents with ionic liquid. Cryogenic transmission electron microscopy, small-angle neutron-, X-ray- and static light scattering were used to investigate the structure of cellulose solutions in mixture of dimethyl formamide and 1-ethyl-3-methylimidazolium acetate. Structural information on the dissolved chains (average molecular weight ∼ 5 × 10(4)g/mol; gyration radius ∼ 36 nm, persistence length ∼ 4.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2013
Tetrathiafulvalene-tetracyanoquinodimethane charge-transfer complex (TTF-TCNQ CTC) represents a promising organic conductive system. However, application of this donor-acceptor pair is highly limited, because of its ultrafast crystallization kinetics and very low solubility. In this work, conductive organic nanofibers were generated via a coelectrospinning process of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with embedded TTF and TCNQ in the shell and core solutions, respectively.
View Article and Find Full Text PDFBroader applications of carbon nanotubes to real-world problems have largely gone unfulfilled because of difficult material synthesis and laborious processing. We report high-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical conductivity of metals. These fibers consist of bulk-grown CNTs and are produced by high-throughput wet spinning, the same process used to produce high-performance industrial fibers.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2012
The amphiphilic character of cellulose molecules provides the opportunity to use it as a novel eco-friendly emulsifying agent for formation of stable oil-in-water or water-in-oil dispersions. This may be done by mixing water, oil and cellulose solution in an ionic liquid. A more practical alternative is to form first a hydrogel from the cellulose/ionic liquid solution by coagulation with water and applying it into the sonicated water/oil or oil/water mixtures.
View Article and Find Full Text PDF