HIV-1 Gag proteins can multimerize upon the viral genomic RNA or multiple random cellular messenger RNAs to form a virus particle or a virus-like particle, respectively. To date, whether the two types of particles form via the same Gag multimerization process has remained unclarified. Using photoactivated localization microscopy to illuminate Gag organizations and dynamics at the nanoscale, here, we showed that genomic RNA mediates Gag multimerization in a more cluster-centric, cooperative, and spatiotemporally coordinated fashion, with the ability to drive dense Gag clustering dependent on its ability to act as a long-stranded scaffold not easily attainable by cellular messenger RNAs.
View Article and Find Full Text PDFThe genome exists as an organized, three-dimensional (3D) dynamic architecture, and each cell type has a unique 3D genome organization that determines its cell identity. An unresolved question is how cell type-specific 3D genome structures are established during development. Here, we analyzed 3D genome structures in muscle cells from mice lacking the muscle lineage transcription factor (TF), MyoD, versus wild-type mice.
View Article and Find Full Text PDFMany pathological processes are driven by RNA-protein interactions, making such interactions promising targets for molecular interventions. HIV-1 assembly is one such process, in which the viral genomic RNA interacts with the viral Gag protein and serves as a scaffold to drive Gag multimerization that ultimately leads to formation of a virus particle. Here, we develop self-assembled RNA nanostructures that can inhibit HIV-1 virus assembly, achieved through hybridization of multiple artificial small RNAs with a stem-loop structure (STL) that we identify as a prominent ligand of Gag that can inhibit virus particle production via STL-Gag interactions.
View Article and Find Full Text PDFBimolecular Fluorescence Complementation (BiFC) is a versatile approach for intracellular analysis of protein-protein interactions (PPIs), but the tendency of the split fluorescent protein (FP) fragments to self-assemble when brought into close proximity of each other by random collision can lead to generation of false-positive signals that hamper high-definition imaging of PPIs occurring on the nanoscopic level. While it is thought that expressing the fusion proteins at a low level can remove false positives without impacting specific signals, there has been no effective strategy to test this possibility. Here, we present a system capable of assessing and removing BiFC false positives, termed Background Assessable and Correctable-BiFC (BAC-BiFC), in which one of the split FP fragments is fused with an optically distinct FP that serves as a reference marker, and the single-cell fluorescence ratio of the BiFC signal to the reference signal is used to gauge an optimal transfection condition.
View Article and Find Full Text PDFNucleic acids, aside from being best known as the carrier of genetic information, are versatile biomaterials for constructing nanoscopic devices for biointerfacing, owing to their unique properties such as specific base pairing and predictable structure. For live-cell analysis of native RNA transcripts, the most widely used nucleic acid-based nanodevice has been the molecular beacon (MB), a class of stem-loop-forming probes that is activated to fluoresce upon hybridization with target RNA. Here, we overview efforts that have been made in developing MB-based bioassays for sensitive intracellular analysis, particularly at the single-molecule level.
View Article and Find Full Text PDFThe ability to monitor the behavior of specific genomic loci in living cells can offer tremendous opportunities for deciphering the molecular basis driving cellular physiology and disease evolution. Toward this goal, clustered regularly interspersed short palindromic repeat (CRISPR)-based imaging systems have been developed, with tagging of either the nuclease-deactivated mutant of the CRISPR-associated protein 9 (dCas9) or the CRISPR single-guide RNA (sgRNA) with fluorescent protein (FP) molecules currently the major strategies for labeling. Recently, we have demonstrated the feasibility of tagging the sgRNA with molecular beacons, a class of small molecule dye-based, fluorogenic oligonucleotide probes, and demonstrated that the resulting system, termed CRISPR/MB, could be more sensitive and quantitative than conventional approaches employing FP reporters in detecting single telomere loci.
View Article and Find Full Text PDFMolecular beacons (MBs) are synthetic oligonucleotide probes that are designed to fluoresce upon hybridization to complementary nucleic acid targets. In contrast to genetically encoded probes that can be readily introduced into cells via standard transfection procedures, using MBs to obtain reliable intracellular measurements entails a reliable delivery method that maximizes MB entry while minimizing cell damage. One promising approach is microporation, a microliter volume electroporation-based method that exhibits reduced harmful events as compared with traditional electroporation methods.
View Article and Find Full Text PDFClustered regularly interspaced short palindromic repeats (CRISPR)-based genomic imaging systems predominantly rely on fluorescent protein reporters, which lack the optical properties essential for sensitive dynamic imaging. Here, we modified the CRISPR single-guide RNA (sgRNA) to carry two distinct molecular beacons (MBs) that can undergo fluorescence resonance energy transfer (FRET) and demonstrated that the resulting system, CRISPR/dual-FRET MB, enables dynamic imaging of non-repetitive genomic loci with only three unique sgRNAs.
View Article and Find Full Text PDFLong noncoding RNAs (lncRNAs) are a family of non-protein-coding RNA transcripts greater than 200 nucleotides in length that have been regarded as crucial modulators of gene expression in various biological and disease contexts, but mechanisms underlying such regulation still remains largely elusive. In addition to cell lysate-based approaches that have proven invaluable for studies of lncRNAs, live-imaging methods can add value by providing more in-depth information on lncRNA dynamics and localizations at the single-molecule level. Recently, we have developed a versatile imaging approach based on molecular beacons (MBs), which are a class of fluorogenic oligonucleotide-based probes with the capacity to convert RNA target hybridization into a measurable fluorescence signal.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
April 2019
Chromatin conformation, localization, and dynamics are crucial regulators of cellular behaviors. Although fluorescence in situ hybridization-based techniques have been widely utilized for investigating chromatin architectures in healthy and diseased states, the requirement for cell fixation precludes the comprehensive dynamic analysis necessary to fully understand chromatin activities. This has spurred the development and application of a variety of imaging methodologies for visualizing single chromosomal loci in the native cellular context.
View Article and Find Full Text PDF