Publications by authors named "Yabing Ke"

Acoustic wave devices have great potential for integration with lab-on-chip highly efficient microfluidics. This article investigates Lamb wave-based unidirectional transducers for application in acoustic wave-driven microfluidic devices with high efficiency. The simulation of the unidirectional transducer is performed via the finite element analysis.

View Article and Find Full Text PDF

A surface acoustic wave based passive temperature sensor capable of multiple access is investigated. Binary Phase Shift Keying (BPSK) codes of eight chips were implemented using a reflective delay line scheme on a Y-Z LiNbO₃ piezoelectric substrate. An accurate simulation based on the combined finite- and boundary element method (FEM/BEM) was performed in order to determine the optimum design parameters.

View Article and Find Full Text PDF

Large time/memory costs have constituted a significant obstacle for accurately analyzing surface acoustic waves (SAWs) in large size two-dimensional (2-D) piezoelectric phononic crystals (PnCs). To overcome this obstacle, this study introduces the unit P matrix and its associated cascading. To obtain an accurate unit P matrix, the Y parameters of the SAW delay lines were derived using a three-dimensional (3-D) finite element model (FEM) with and without 2-D piezoelectric PnCs, respectively, on the transmitting path.

View Article and Find Full Text PDF