Lead (Pb) contamination poses an extensive environmental challenge. Sedum alfredii, as a Zn/Cd co-hyperaccumulator, also exhibits a considerable capability for Pb tolerance and accumulation, which has great potential for phytoremediation of Pb-contaminated soil. However, the mechanisms of Pb uptake and accumulation in Sedum alfredii roots remain opaque.
View Article and Find Full Text PDFEndophytic fungus can bolster plant growth and confer protection against various biotic and abiotic stresses. However, reshaped rhizosphere microecology interactions and root-soil interface processes in situ at the submicrometer scale remain poorly understood. We combined amplicon sequencing and high-resolution nano X-ray fluorescence (nano-XRF) imaging of the root-soil interface to reveal cadmium (Cd) rhizosphere processes.
View Article and Find Full Text PDFSulfur (S) fertilizers, water management and crop rotation are important agronomic practices, related to soil heavy metal bioavailability. However, the mechanisms of microbial interactions remain unclear. Herein, we investigated how S fertilizers (S and NaSO) and water management affected plant growth, soil cadmium (Cd) bioavailability, and rhizospheric bacterial communities in the Oryza sativa L.
View Article and Find Full Text PDFSoil cadmium (Cd) extraction for hyperaccumulators is one of the most important technologies for the remediation of Cd-contaminated farmland soil. However, a phytoremediation model using a single hyperaccumulator cannot guarantee normal agricultural production in contaminated areas. To solve this problem, a combination of efficient remediation and safe production has been developed.
View Article and Find Full Text PDFCadmium (Cd) contamination poses a serious problem in paddy soils. Biochar is frequently reported to deactivate Cd in soils and reduce Cd accumulation in rice plants, but few studies have addressed whether and how biochar affected the microbial communities in rice rhizosphere, which was an important factor determining the metal bioavailability and plant growth. In this study, biochar was pyrolyzed from bamboo (Phyllostachys heterocycla) chips at 350 °C.
View Article and Find Full Text PDF