The electrical connectivity in the inferior olive (IO) nucleus plays an important role in generating well-timed spiking activity. Here we combined electrophysiological and computational approaches to assess the functional organization of the IO nucleus in mice. Spontaneous fast and slow subthreshold events were commonly encountered during in vitro recordings.
View Article and Find Full Text PDFEscape behavior is a defensive action deployed by animals in response to imminent threats. In mammalian species, a variety of different brain circuits are known to participate in this crucial survival behavior. One of these circuits is the periaqueductal gray, a midbrain structure that can command a variety of instinctive behaviors.
View Article and Find Full Text PDFEscaping from imminent danger is an instinctive behaviour that is fundamental for survival, and requires the classification of sensory stimuli as harmless or threatening. The absence of threat enables animals to forage for essential resources, but as the level of threat and potential for harm increases, they have to decide whether or not to seek safety . Despite previous work on instinctive defensive behaviours in rodents, little is known about how the brain computes the threat level for initiating escape.
View Article and Find Full Text PDFGABAergic projection neurons in the cerebellar nuclei (CN) innervate the inferior olive (IO) that in turn is the source of climbing fibers targeting Purkinje neurons in the cerebellar cortex. Anatomical evidence suggests that CN synapses modulate electrical coupling between IO neurons. In vivo studies indicate that they are also involved in controlling synchrony and rhythmicity of IO neurons.
View Article and Find Full Text PDFThe generation of temporal patterns is one of the most fascinating functions of the brain. Unlike the response to external stimuli temporal patterns are generated within the system and recalled for a specific use. To generate temporal patterns one needs a timing machine, a "master clock" that determines the temporal framework within which temporal patterns can be generated and implemented.
View Article and Find Full Text PDFThe rostromedial medulla participates in a large variety of sensory, motor, and autonomic functions. We asked whether individual bulbospinal neurons in this region have localized, target-specific terminal arbors or whether they collateralize broadly in the spinal cord. Collateralization was quantified along three spinal axes, rostrocaudal, left-right, and dorsoventral, by using double retrograde labeling.
View Article and Find Full Text PDF