Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Raman spectroscopy is an extremely powerful laser-based method for characterizing materials based on their unique inelastic scattering spectrum. Ultimately, the power of the technique is limited by the resolution of the spectrometer. Here we introduce a new method for achieving Super-Spectral-Resolution Raman Spectroscopy (SSR-RS), by angle-tuning a Fabry-Pérot (F-P) etalon filter that we incorporated in a micro-Raman setup.
View Article and Find Full Text PDFOpen microcavities (OMCs) enable tuning of the optical resonances of a system and insertion of different materials between the mirrors. They are of large scientific interest due to their many potential applications. Using OMCs, we can observe strong light-matter coupling while tuning the cavity wavelength.
View Article and Find Full Text PDFTransition-metal dichalcogenides (TMDCs) are unique layered materials with exotic properties. So, examining their structures holds tremendous importance. 2H-MoSe (analogous to MoS; Gr.
View Article and Find Full Text PDFDistinguishing between d and l enantiomers is of important scientific interest, especially for the pharmaceutical industry. Enantiomeric differentiation in the solid form is repeatedly presented as a challenge in the research community. Raman spectroscopy is a nondestructive tool, widely used for the characterization of different materials by probing their vibrational modes.
View Article and Find Full Text PDFLong-range structures and dynamics are central to coordination chemistry, yet are hard to identify experimentally. By combining polarized low-frequency Raman spectroscopy with single crystal XRD to study barium nitrilotriacetate, a metal-organic coordination polymer and a useful pyrolysis precursor, we could assign Raman peaks experimentally to layer shear motions and perpendicular hydrogen bond vibrations. These directional long-range interactions further determined the preferred fracture directions during crystallization, establishing an important link between structural motifs in the precursor, and the porosity of the carbon it yields upon pyrolysis.
View Article and Find Full Text PDFAmong the most reliable techniques for exfoliation of two-dimensional (2D) layered materials, sonication-assisted liquid-phase exfoliation (LPE) is considered as a cost-effective and straightforward method for preparing graphene and its 2D inorganic counterparts at reasonable sizes and acceptable levels of defects. Although there were rapid advances in this field, the effect and outcome of the sonication frequency are poorly understood and often ignored, resulting in a low exfoliation efficiency. Here, we demonstrate that simple mild bath sonication at a higher frequency and low power positively contributes to the thickness, size, and quality of the final exfoliated products.
View Article and Find Full Text PDFCoordination polymers (CPs) and coordination network solids such as metal-organic frameworks (MOFs) have gained increasing interest during recent years due to their unique properties and potential applications. Preparing 3D printed structures using CP would provide many advantages towards utilization in fields such as catalysis and sensing. So far, functional 3D structures were printed mostly by dispersing pre-synthesized particles of CPs and MOFs within a polymerizable carrier.
View Article and Find Full Text PDFRaman spectroscopy is a widely used characterization technique in material science. It is a non-destructive tool with relatively simple instrumentation, and provides intrinsic qualitative information of analytes by probing their vibrational modes. In many cases, Raman enhancement is essential for detecting low-intensity signals in high-noise environments, spectrally unresolved features, and hidden modes.
View Article and Find Full Text PDFThe pharmaceutical industry is in need of new techniques to identify the chirality of solids due to regulatory and safety concerns regarding the biological activity of enantiomers. In this study, we present for the first time the application of low-frequency Raman spectroscopy as a new and sensitive method for analyzing the chiral purity of crystals. Using this method, we were able to identify small amounts, as low as 1 % w/w, of an enantiomer in racemic crystals.
View Article and Find Full Text PDFLow Frequency Vibrational (LFV) modes of peptides and proteins are attributed to the lattice vibrations and are dependent on their structural organization and self-assembly. Studies taken in order to assign specific absorption bands in the low frequency range to self-assembly behavior of peptides and proteins have been challenging. Here we used a single stage Low Frequency Raman (LF-Raman) spectrometer to study a series of diastereomeric analogue peptides to investigate the effect of peptides self-assembly on the LF-Raman modes.
View Article and Find Full Text PDFWe present a new method for differentiating racemic crystals from enantiopure crystals. Recently, developments in optical filters have enabled the facile use of Raman spectroscopy to detect low-frequency vibrational (LFV) modes. Here, for the first time, we use Raman spectroscopy to characterize the LFV modes for crystalline organic materials composed of chiral molecules.
View Article and Find Full Text PDFRapid and accurate Gram differentiation is paramount as the first step of pathogen identification and antibiotics administration. However, the current method requires additional reagents, is time-consuming, and is operator dependent. Here we show the principle of tip enhanced Raman spectroscopy (TERS) can differentiate between Gram negative and positive species, by detecting the changes in tip-enhancement in the Raman scattering from the bacteria's lipid-bilayer membrane, which specifically enhances Gram negative bacteria.
View Article and Find Full Text PDFThe low-frequency vibrational (LFV) modes of biomolecules reflect specific intramolecular and intermolecular thermally induced fluctuations that are driven by external perturbations, such as ligand binding, protein interaction, electron transfer, and enzymatic activity. Large efforts have been invested over the years to develop methods to access the LFV modes due to their importance in the studies of the mechanisms and biological functions of biomolecules. Here, we present a method to measure the LFV modes of biomolecules based on Raman spectroscopy that combines volume holographic filters with a single-stage spectrometer, to obtain high signal-to-noise-ratio spectra in short acquisition times.
View Article and Find Full Text PDFThe ability to confine excitons within monolayers has led to fundamental investigations of nonradiative energy transfer, super-radiance, strong light-matter coupling, high-efficiency light-emitting diodes, and recently lasers in lateral resonator architectures. Vertical cavity surface emitting lasers (VCSELs), in which lasing occurs perpendicular to the device plane, are critical for telecommunications and large-scale photonics integration, however strong optical self-absorption and low fluorescence quantum yields have thus far prevented coherent emission from a monolayer microcavity device. Here we show lasing from a monolayer VCSEL using a single molecule thick film of amphiphilic fluorescent dye, assembled via Langmuir-Blodgett deposition, as the gain layer.
View Article and Find Full Text PDFPhase separation occurs whenever a solvent leaves a solution of strongly incompatible polymers. This can happen in bulk and in films. Films can be tailored as substrates for multiple applications such as solar cells, surface catalysis, and antireflection coatings.
View Article and Find Full Text PDFHybridized polaritons are generated by simultaneously coupling two vibrational modes of two different organic materials to the resonance of a low-loss infrared optical microcavity. A thin film of poly methyl methacrylate with solvent molecules of dimethylformamide trapped inside provided two spectrally narrow, closely spaced carbonyl stretches with absorption peaks at 1731 and 1678 cm(-1). Situating this film in a microcavity based on Ge/ZnS distributed Bragg reflector mirrors produced three distinct polariton branches in the dispersion relation due to hybridization of the vibrational resonances.
View Article and Find Full Text PDFRapid and accurate detection of pathogens is paramount to human health. Spectroscopic techniques have been shown to be viable methods for detecting various pathogens. Enhanced methods of Raman spectroscopy can discriminate unique bacterial signatures; however, many of these require precise conditions and do not have in vivo replicability.
View Article and Find Full Text PDFPulsed laser deposition (PLD) is widely used in combinatorial material science, as it enables rapid fabrication of different composite materials. Nevertheless, this method was usually limited to small substrates, since PLD deposition on large substrate areas results in severe lateral inhomogeneity. A few technical solutions for this problem have been suggested, including the use of different designs of masks, which were meant to prevent inhomogeneity in the thickness, density, and oxidation state of a layer, while only the composition is allowed to be changed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2015
We describe the design, fabrication, and characterization of mechanically stable, reproducible, and highly reflecting distributed Bragg reflectors (DBR) composed of thermally evaporated thin films of calcium fluoride (CaF2) and zinc sulfide (ZnS). CaF2 and ZnS were chosen as the low and high refractive index components of the multilayer DBR structures, with n = 1.43 and n = 2.
View Article and Find Full Text PDFAll-oxide-based photovoltaics (PVs) encompass the potential for extremely low cost solar cells, provided they can obtain an order of magnitude improvement in their power conversion efficiencies. To achieve this goal, we perform a combinatorial materials study of metal oxide based light absorbers, charge transporters, junctions between them, and PV devices. Here we report the development of a combinatorial internal quantum efficiency (IQE) method.
View Article and Find Full Text PDF