Publications by authors named "Yaakov Mandelbaum"

Plasmonic nanostructure arrays, designed for performance as pixels in an advanced SERS imaging device, were fabricated by gallium focused ion beam (FIB). Though the FIB is best suited for etching holes and negative structures, our previously reported simulations favor protrusions. Herein, we report on the FIB methodology to "sculpt" positive structures by "ion-blasting" away the surrounding material.

View Article and Find Full Text PDF

Raman spectroscopy is an extremely powerful laser-based method for characterizing materials based on their unique inelastic scattering spectrum. Ultimately, the power of the technique is limited by the resolution of the spectrometer. Here we introduce a new method for achieving Super-Spectral-Resolution Raman Spectroscopy (SSR-RS), by angle-tuning a Fabry-Pérot (F-P) etalon filter that we incorporated in a micro-Raman setup.

View Article and Find Full Text PDF

The use of plasmonic particles, specifically, localized surface plasmonic resonance (LSPR), may lead to a significant improvement in the electrical, electrochemical, and optical properties of materials. Chemical modification of the dielectric constant near the plasmonic surface should lead to a shift of the optical resonance and, therefore, the basis for color tuning and sensing. In this research, we investigated the variation of the LSPR by modifying the chemical environment of Ag nanoparticles (NPs) through the complexation of Pt(IV) metal cations near the plasmonic surface.

View Article and Find Full Text PDF

Purpose: To evaluate the divergence between the neodymium-doped yttrium aluminum garnet (Nd:YAG) surgical laser and the aiming diode laser beams foci.

Design: Optical analysis and measurements were performed using a Volk Goldmann 3-mirror lens with a Nidek YC-1800 Nd:YAG laser apparatus.

Subjects: None.

View Article and Find Full Text PDF

This article, a part of the larger research project of Surface-Enhanced Raman Scattering (SERS), describes an advanced study focusing on the shapes and materials of Tip-Enhanced Raman Scattering (TERS) designated to serve as part of a novel imager device. The initial aim was to define the optimal shape of the "probe": tip or cavity, round or sharp. The investigations focused on the effect of shape (hemi-sphere, hemispheroid, ellipsoidal cavity, ellipsoidal rod, nano-cone), and the effect of material (Ag, Au, Al) on enhancement, as well as the effect of excitation wavelengths on the electric field.

View Article and Find Full Text PDF

An advanced Surface-Enhanced Raman Scattering (SERS) Nanosensor Array, dedicated to serve in the future as a pH imager for the real-time detection of chemical reaction, is presented. The full flow of elementary steps-architecture, design, simulations, fabrication, and preliminary experimental results of structural characterization (Focused Ion Beam (FIB), TEM and SEM)-show an advanced SERS pixel array that is capable of providing spatially resolved measurements of chemical pH in a fluid target that became more than desirable in this period. Ultimately, the goal will be to provide real-time monitoring of a chemical reaction.

View Article and Find Full Text PDF

Detection of evanescent waves through Near-field Scanning Optical Microscopy (NSOM) has been simulated in the past, using Finite Elements Method (FEM) and 2D advanced simulations of a silicon Schottky diode, shaped as a truncated trapezoid photodetector, and sharing a subwavelength pin hole aperture. Towards enhanced resolution and next applications, the study of polarization's influence was added to the scanning. The detector has been horizontally shifted across a vertically oriented Gaussian beam while several E-field modes, are projected on the top of the device.

View Article and Find Full Text PDF