Publications by authors named "YaChen Gao"

We synthesized carbon quantum dots (CQDs) using a solvothermal method with -phenylenediamine as the carbon and nitrogen source. The sample was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. When we continued the optical characterization of the CQDs, we were surprised to discover that the colors of the synthesized CQDs changed with the dilution of the original solution.

View Article and Find Full Text PDF

We proposed a far-infrared tunable metamaterial absorber using vanadium dioxide (VO) and graphene as controlling materials. The properties of the absorber are investigated theoretically using the finite-difference time-domain (FDTD) technique. It was found that when the Fermi energy level of graphene is fixed at zero, VO is in the insulated state, and the metasurface exhibits far-infrared broadband absorption performance, with absorptance exceeding 90% in the wavelength range of 12.

View Article and Find Full Text PDF

As the resonance response in magnetic systems usually occurs at low frequencies, previously known as terahertz high -factor resonances, are mainly excited by electrical resonances. In this paper, we present a metamaterial based on vanadium dioxide-silicon arrays capable of achieving a -factor of up to 165ā€‰198; the ultra-high -factor Fano resonance excited by the proposed metamaterial is mainly affected by strong magnetic resonance. The analysis of diffractive coupling theory, electric field, magnetic field and current distribution shows that strong magnetic resonance is mainly realized by coupling localized plasmon resonance with the lattice resonance.

View Article and Find Full Text PDF

We propose a switchable and tunable terahertz metasurface polarization converter based on graphene. The metasurface is composed of a bottom gold film, a lower SiO layer, an intermediate N-type graphene layer, an upper SiO layer, and a top layer of square graphene resonant rings. By using the CST Microwave Studio, we studied their polarization conversion properties.

View Article and Find Full Text PDF

Nanophotonics use the interaction between light and subwavelength structures to design nanophotonic devices and to show unique optical, electromagnetic, and acoustic properties that natural materials do not have. However, this usually requires considerable expertise and a lot of time-consuming electromagnetic simulations. With the continuous development of artificial intelligence, people are turning to deep learning for designing nanophotonic devices.

View Article and Find Full Text PDF

A switchable and tunable terahertz (THz) metamaterial based on photosensitive silicon and Vanadium dioxide (VO) was proposed. By using a finite-difference time-domain (FDTD) method, the transmission and reflective properties of the metamaterial were investigated theoretically. The results imply that the metamaterial can realize a dual electromagnetically induced transparency (EIT) or two narrow-band absorptions depending on the temperature of the VO.

View Article and Find Full Text PDF

In this study, a terahertz (THz) switchable multifunctional metasurface is proposed to realize polarization conversion and absorption. When vanadium dioxide (VO) is in the dielectric state, the structure demonstrates polarization conversion with double broadband transmission. The transmittance of the double broadband is greater than 80% in the frequency ranges of 2.

View Article and Find Full Text PDF

Chronic glomerulonephritis (CGN) is a leading cause of end-stage renal disease in China; thus, there is an urgent need for effective therapeutic targets and strategies for CGN treatment. However, studies on CGN pathogenesis are limited. In this study, we found that the fat mass and obesity-associated protein (FTO) was significantly decreased in the lipopolysaccharide (LPS)-induced human glomerular mesangial cells (HGMCs) (Pā€‰<ā€‰0.

View Article and Find Full Text PDF

A metal-insulator-metal waveguide structure composed of a hexagonal resonator cavity and a ring with a slit is proposed. By using the finite difference time domain method, the transmission properties of the structure were studied. It was found that three distinct plasmon-induced transparency peaks appear in the visible and near-infrared bands, and the transmissivity of the three peaks is more than 80%.

View Article and Find Full Text PDF

The process and condition of saturable absorption (SA) and reverse saturable absorption (RSA) of ultrafast nonlinear optics in metal nanoparticles are essential for applications including light generation, amplification, modulation, and switching. Here, we first discover and explore the multiple transformations (SA-RSA-SA) of ultrafast nonlinear absorption behavior of metal nanoparticles in femtosecond pulses. Correspondingly, the energy level model and fitting formula of multiple transformations are established to illustrate the process of optical response.

View Article and Find Full Text PDF

The nonlinear absorption of 40 nm Ag nanoparticles (Ag NPs) was investigated using open aperture (OA) Z-scan technique at 532 nm. Experiments show that the nonlinear absorption behavior of Ag NPs is intensity dependent. Specifically, under low laser energy the Ag NPs shows saturable absorption (SA).

View Article and Find Full Text PDF

Background: Circular RNAs (circRNAs), a unique novel type of RNA, have been widely reported to be involved in physiologic and pathologic processes in humans. However, the exact molecular pathogenesis of circRNAs in chronic glomerulonephritis (CGN) is far from clear.

Objective: This paper aims to evaluate the specific expression profile of circRNAs in renal cortex tissues from Adriamycin-induced CGN rats.

View Article and Find Full Text PDF

We designed an infrared ultra-broadband metal-insulator-metal (MIM)-based absorber which is composed of a top layer with four different chromium (Cr) nano-rings, an intermediate media of aluminum trioxide (AlO), and a bottom layer of tungsten (W). By using the finite-difference time-domain (FDTD), the absorption performance of the absorber was studied theoretically. The results indicate that the average absorption of the absorber can reach 94.

View Article and Find Full Text PDF

In this paper, we propose a dual-channel mid-infrared toroidal metasurface that consists of split equilateral triangular rings. The electromagnetic responses are analyzed by the finite-difference-time-domain (FDTD) method and temporal coupled-mode theory (TCMT). The results show that one channel of the metasurface is insensitive to the polarization angle of the incident light and temperature, while the other channel is sensitive.

View Article and Find Full Text PDF

Z-scan technology was used to study the nonlinear absorption (NLA) and nonlinear refraction (NLR) of silver nanoparticles (Ag NPs) with various sizes under different laser intensities. The results demonstrate that the NLA and NLR of Ag NPs were size-dependent. Specifically, the 10 nm Ag NPs exhibit saturation absorption (SA) and insignificant NLR.

View Article and Find Full Text PDF

A high absorption broadband absorber based on MXene and tungsten nanospheres in visible and near-infrared bands is proposed. The absorber has a maximum absorption of 100% and an average absorption of 95% in the wavelength range of 400-2500 nm. The theoretical mechanism and parameter adjustability of the absorber are analyzed by FDTD solutions.

View Article and Find Full Text PDF

A multifunctional switchable terahertz (THz) absorber based on graphene and vanadium dioxide (VO) is presented. The properties of the absorber are studied theoretically by the finite-difference time-domain (FDTD) method. The results illustrate that the structure switches between the single-broadband or double-broadband absorption depending on the temperature of VO.

View Article and Find Full Text PDF

A multi-functional broadband absorber based on graphene and strontium titanate (STO) film was designed. Additionally, the frequency, bandwidth, and amplitude of the absorber could be tuned by adjusting temperature and Fermi level of the graphene. By using the finite-difference time-domain (FDTD) method, the numerical calculation result shows that, when keeping the device temperature at 230 K and setting graphene Fermi level to be 1 eV, three absorption peaks at 1.

View Article and Find Full Text PDF

The multi-channel high-efficiency absorber in the mid-infrared band has broad application prospects. Here, we propose an SiC-photonic crystal (PhC) heterostructure-SiC structure to realize the absorber. The absorption characteristics of the structure are studied theoretically.

View Article and Find Full Text PDF

A bifunctional tunable metamaterial composed of pattern metal structure, graphene, and strontium titanate (STO) film is proposed and studied numerically and theoretically. The dual plasmon-induced transparency (PIT) window is obtained by coupling the bright state cut wire (CW) and two pairs of dark state dual symmetric semiring resonators (DSSRs) with different parameters. Correspondingly, slow light effect can also be realized.

View Article and Find Full Text PDF

In the research of resistant aging, the concentration of Growth differentiation factor-11(GDF11) is an indispensable parameter. So the accurate detection of GDF11 is very important in life science and medical cosmetology. Hereby, we proposed and demonstrated a simple method to detect low concentration GDF11 by using fiber surface plasmon resonance (SPR) sensor decorated with two-dimension (2D) material TiC-MXene and gold nanosphere.

View Article and Find Full Text PDF

The nonlinear refraction of silver nanoparticles (AgNPs) in n-hexane was studied by using the closed-aperture Z-scan technique with a 532 nm nanosecond laser. It was found that, the nonlinear refraction of AgNPs shows the coexistence and transformation from self-focusing to self-defocusing. Specifically, self-focusing occurs at low excitation intensity, self-defocusing occurs at high excitation intensity, and coexistence of self-focusing and self-defocusing occurs at relatively moderate excitation intensity.

View Article and Find Full Text PDF

Currently, metasurfaces (MSs) integrating with different active materials have been widely explored to actively manipulate the resonance intensity of multi-band electromagnetic induced transparency (EIT) windows. Unfortunately, these hybrid MSs can only realize the global control of multi-EIT windows rather than selective control. Here, a graphene-functionalized complementary terahertz MS, composed of a dipole slot and two graphene-integrated quadrupole slots with different sizes, is proposed to execute selective and active control of dual-band electromagnetic induced reflection (EIR) windows.

View Article and Find Full Text PDF

Photoactuated liquid crystalline elastomer (LCE) materials are gaining much attention in many application fields, but challenges for the precise modulation of their photoresponses still exist. Researchers have explored various optical parameters, such as polarization, intensity, and wavelength, to obtain differential responses. The development of photoactuated LCE materials with wavelength-selective responsiveness is more versatile and has attracted more interest, but such LCE materials are commonly prepared by incorporating different molecular chromophores or dyes into the LCE matrices.

View Article and Find Full Text PDF

We propose and demonstrate a tunable dual-band mid-infrared absorber structure based on the coupling effect of a surface plasmon polariton (SPP) and Tamm phonon-polariton (TPhP). The structure is composed of the distributed Bragg reflector (DBR), air layer, SiC and graphene ribbons. In the air layer, the graphene ribbons are embedded to realize the localized SPP (LSPP), which makes the structure support both the graphene LSPP (GLSPP) and TPhP.

View Article and Find Full Text PDF