The present study was aimed to investigate the protective effect of bark extracts against cataract in streptozotocin-induced diabetic male albino rats. Aldose reductase is a key enzyme in the intracellular polyol pathway, which plays a major role in the development of diabetic cataract. Rats were divided into five groups as normal control, diabetic control, and diabetic control treated with different concentrations of bark extracts.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2013
How developing axons in the corpus callosum (CC) achieve their homotopic projection to the contralateral cortex remains unclear. We found that axonal position within the CC plays a critical role in this projection. Labeling of nearby callosal axons in mice showed that callosal axons were segregated in an orderly fashion, with those from more medial cerebral cortex located more dorsally and subsequently projecting to more medial contralateral cortical regions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2012
Directional flow of membrane components has been detected at the leading front of fibroblasts and the growth cone of neuronal processes, but whether there exists global directional flow of plasma membrane components over the entire migrating neuron remains largely unknown. By analyzing the trajectories of antibody-coated single quantum dots (QDs) bound to two membrane proteins, overexpressed myc-tagged synaptic vesicle-associated membrane protein VAMP2 and endogenous neurotrophin receptor TrkB, we found that these two proteins exhibited net forward transport, which is superimposed upon Brownian motion, in both leading and trailing processes of migrating cerebellar granule cells in culture. Furthermore, no net directional transport of membrane proteins was observed in nonmigrating cells with either growing or stalling leading processes.
View Article and Find Full Text PDFObjective: To explore the changes of inferior collicular (IC) neurons after noise exposure cochlea injury in guinea pig to elucidate the encoding mechanism of pure tones, observe the changes of IC gamma-amino butyric acid (GABA) after cochlear damage by acoustic trauma and understand the possible mechanism of symptoms such as noise-induced tinnitus, hyperacusis and loudness recruitment.
Methods: The responses of IC neurons to pure tone stimuli were observed in guinea pig at Day 1 and Days 11-21 after cochlear damage induced by noise exposure. And the IC neurons of normal guinea pig were assigned as the controls.