Accumulating evidence has revealed the adenosine 2A receptor is a key tuner for neuropathological and neurobehavioral changes following traumatic brain injury by experimental animal models and a few clinical trials. Here, we highlight recent data involving acute/sub-acute and chronic alterations of adenosine and adenosine 2A receptor-associated signaling in pathological conditions after trauma, with an emphasis of traumatic brain injury, including neuroinflammation, cognitive and psychiatric disorders, and other severe consequences. We expect this would lead to the development of therapeutic strategies for trauma-related disorders with novel mechanisms of action.
View Article and Find Full Text PDFAims: Adenosine 2A receptor (A R) is widely expressed in the brain and plays important roles in neuroinflammation, and the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a crucial component of the innate immune system while the regulation of A R on it in the central nervous system (CNS) has not been clarified.
Methods: The effects of microglial A R on NLRP3 inflammasome assembly and activation were investigated in wild-type, A R- or NLRP3-knockout primary microglia with pharmacological treatment. Microglial A R or NLRP3 conditional knockout mice were used to interrogate the effects of this regulation on neuroinflammation posttraumatic brain injury (TBI).
The formation of fear memory is crucial in emotional disorders such as PTSD and anxiety. Traumatic brain injury (TBI) can cause emotional disorders with dysregulated fear memory formation; however, their cross-interaction remains unclear and hurdled the treatment against TBI-related emotional disorders. While adenosine A2A receptor(A2AR) contributes to the physiological regulation of fear memory, this study aimed to evaluate the A2AR role and possible mechanisms in post-TBI fear memory formation using a craniocerebral trauma model, genetically modified A2AR mutant mice, and pharmacological A2AR agonist CGS21680 and antagonist ZM241385.
View Article and Find Full Text PDFThe purpose of the present study was to investigate the effect of glutamate scavenger oxaloacetate (OA) combined with CGS21680, an adenosine A2A receptor (A2AR) agonist, on acute traumatic brain injury (TBI), and to elucidate the underlying mechanisms. C57BL/6J mice were subjected to moderate-level TBI by controlled cortical impact, and then were treated with OA, CGS21680, or OA combined with CGS21680 at acute stage of TBI. At 24 h post TBI, neurological severity score, brain water content, glutamate concentration in cerebrospinal fluid (CSF), mRNA and protein levels of IL-1β and TNF-α, mRNA level and activity of glutamate oxaloacetate aminotransferase (GOT), and ATP level of brain tissue were detected.
View Article and Find Full Text PDFEffective treatment for cognitive dysfunction after traumatic brain injury (TBI) is lacking in clinical practice. Increased brain-derived neurotrophic factor (BDNF) expression in cognitive circuits can significantly alleviate cognitive dysfunction in animal models of TBI. Selective 5-hydroxytryptamine receptor 6 (5-HTR) agonists significantly increase BDNF expression and improve cognitive function.
View Article and Find Full Text PDFTraumatic brain injury (TBI) survivors suffer from long-term disability and neuropsychiatric sequelae due to irreparable brain tissue destruction. However, there are still few efficient therapies to promote neurorestoration in damaged brain tissue. This study aimed to investigate whether the pro-oncogenic gene ski can promote neurorestoration after TBI.
View Article and Find Full Text PDFNLRP3 inflammasome plays a crucial role in the innate immune system. Our group previously reported that the microglial adenosine 2A receptor (AR) regulates canonical neuroinflammation, which is affected by the glutamate concentration. However, the regulatory effect of AR on NLRP3 inflammasome and the effects of glutamate concentration remain unknown.
View Article and Find Full Text PDFBackground: Cognitive impairment in the late stage of traumatic brain injury (TBI) is associated with the NOD-, LRR and pyrin domain-containing protein 3 (NLRP3) inflammasome, which plays an important role in neuroinflammation. Although classical inflammatory pathways have been well-documented in the late stage of TBI (4-8 weeks post-injury), the mechanism by which the NLRP3 inflammasome impairs cognition is still unclear.
Methods: Mice lacking the gene encoding for NLRP3 (NLRP3-knockout mice) and their wild-type littermates were used in a controlled cortical impact model of TBI.
Tau hyperphosphorylation is a characteristic alteration present in a range of neurological conditions, such as traumatic brain injury (TBI) and neurodegenerative diseases. Treatments targeting high-mobility group box protein 1 (HMGB1) induce neuroprotective effects in these neuropathologic conditions. However, little is known about the interactions between hyperphosphorylated tau and HMGB1 in neuroinflammation.
View Article and Find Full Text PDFThe heteromeric complexes of adenosine 2A receptor (A2AR) and N-methyl-D-aspartate receptor (NMDAR) have recently been confirmed in cell experiments, while its in situ detection at the subcellular level of brain tissue has not yet been achieved. Proximity Ligation Assay (PLA) enables the detection of low-abundance proteins and their interactions at the cellular level with high specificity and sensitivity, while Transmission electron microscope (TEM) is an excellent tool for observing subcellular structures. To develop a highly efficient and reproducible technique for in situ detection of protein interactions at subcellular levels, in this study, we modified the standard PLA sample preparation method to make the samples suitable for analysis by transmission electron microscopy.
View Article and Find Full Text PDFObjectives: The present study clarified the role and signalling pathway of Ski in regulating proliferation and apoptosis in fibroblasts under high-glucose (HG) conditions.
Materials And Methods: The proliferation and apoptosis of rat primary fibroblasts were assessed using EdU incorporation and TUNEL assays. The protein and phosphorylation levels of the corresponding factors were measured using immunofluorescence staining and Western blotting.
Background: The transplantation of bone marrow mesenchymal stem cells (BMSCs) is a promising therapeutic strategy for wound healing. However, the poor migration capacity and low survival rate of transplanted BMSCs in wounds weaken their potential application.
Objective: To identify the optimal protocol for BMSCs preconditioned with HO and improve the therapeutic efficacy using HO-preconditioned BMSCs in wound healing.
TGF-β1 promotes cell proliferation in only some tumors and exerts bidirectional regulatory effects on the proliferation of fibroblasts. This study intends to explore whether the mechanism is related to increased expression of Ski. Cell proliferation of the fibrosarcoma cell line L929 was assessed with an ELISA BrdU kit.
View Article and Find Full Text PDFSpatial recognition memory impairment is an important complication after traumatic brain injury (TBI). We previously found that spatial recognition memory impairment can be alleviated in adenosine A receptor knockout (A R KO) mice after TBI, but the mechanism remains unclear. In the current study, we used manganese-enhanced magnetic resonance imaging and the Y-maze test to determine whether the electrical activity of neurons in the retrosplenial cortex (RSC) was reduced and spatial recognition memory was impaired in wild-type (WT) mice after moderate TBI.
View Article and Find Full Text PDFPathogens such as bacterial lipopolysaccharide (LPS) play an important role in promoting the production of the inflammatory cytokines interleukin-1 beta (IL-1β) and tumour necrosis factor-α (TNF-α) in response to infection or damage in microglia. However, whether different signalling pathways regulate these two inflammatory factors remains unclear. The protein kinase C (PKC) family is involved in the regulation of inflammation, and our previous research showed that the activation of the PKC pathway played a key role in the LPS-induced transformation of the adenosine A receptor (AR) from anti-inflammatory activity to pro-inflammatory activity under high glutamate concentrations.
View Article and Find Full Text PDFCaffeine is a substance that is consumed worldwide, and it may exert neuroprotective effects against various cerebral insults, including neurotrauma, which is the most prevalent injury among military personnel. To investigate the effects of caffeine on high-intensity blast wave-induced severe blast injury in mice, three different paradigms of caffeine were applied to male C57BL/6 mice with severe whole body blast injury (WBBI). The results demonstrated that chronic caffeine treatment alleviated blast-induced traumatic brain injury (bTBI); however, both chronic and acute caffeine treatments exacerbated blast-induced lung injuries and, more importantly, increased both the cumulative and time-segmented mortalities postinjury.
View Article and Find Full Text PDFIncreasing evidence has suggested that bidirectional regulation of cell proliferation is one important effect of TGF-β1 in wound healing. Increased c-Ski expression plays a role in promoting fibroblast proliferation at low TGF-β1 concentrations, but the mechanism by which low TGF-β1 concentrations regulate c-Ski levels remains unclear. In this study, the proliferation of rat primary fibroblasts was assessed with an ELISA BrdU kit.
View Article and Find Full Text PDFTraumatic brain injury-induced acute lung injury (TBI-ALI) is a serious complication of traumatic brain injury (TBI). Our previous clinical study found that high levels of blood glutamate after TBI were closely related to the occurrence and severity of TBI-ALI, while it remains unknown whether a high concentration of blood glutamate directly causes or aggravates TBI-ALI. We found that inhibition of the adenosine A2A receptor (A2AR) after brain injury alleviated the TBI-ALI; however, it is unknown whether lowering blood glutamate levels in combination with inhibiting the A2AR would lead to better effects.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2018
Excitatory amino acid transporters (EAATs) on cerebral vascular endothelial cells play an important role in maintaining glutamate homeostasis in the brain. The dysfunction of endothelial EAATs is an important reason for the dramatically elevated brain glutamate levels after brain injury, such as traumatic brain injury (TBI). The adenosine A receptor (AR) plays an important role in regulating the brain glutamate level after brain injury; however, researchers have not clearly determined whether this role was related to its ability to regulate endothelial EAATs.
View Article and Find Full Text PDFRecent studies have shown that after traumatic brain injury (TBI), the number of autophagosomes is markedly increased in brain cells surrounding the wound; however, whether autophagy is enhanced or suppressed by TBI remains controversial. In our study, we used a controlled cortical impact system to establish models of mild, moderate and severe TBI. In the mild TBI model, the levels of autophagy-related protein 6 (Beclin1) and autophagy-related protein 12 (ATG12)-autophagy-related protein 5 (ATG5) conjugates were increased, indicating the enhanced initiation of autophagy.
View Article and Find Full Text PDFBackground: Acute lung injury (ALI) is a serious complication of stroke that occurs with a high incidence. Our preclinical results indicated that ALI might be related to blood glutamate levels after brain injury. The purpose of this study was to assess dynamic changes in blood glutamate levels in patients with stroke and to determine the correlation between blood glutamate levels, ALI, and long-term prognosis after stroke.
View Article and Find Full Text PDFGlucocorticoids are commonly used for the treatment of pancreatitis and complicated acute lung injury and help to reduce the mortality rates of both. The effect of gene variants in heat shock protein 90 (Hsp90), a key chaperone molecule of the glucocorticoid receptor (GR), on the therapeutic effect of glucocorticoids is unclear. Our study aims to investigate the different susceptibility to glucocorticoid treatment in BALB/c and C57BL/6 mice carrying different Hsp90 genotypes in an animal model of pancreatitis-induced lung injury.
View Article and Find Full Text PDFTraumatic brain injury-induced acute lung injury (TBI-ALI) is a serious complication after brain injury for which predictive factors are lacking. In this study, we found significantly elevated blood glutamate concentrations in patients with TBI or multiple peripheral trauma (MPT), and patients with more severe injuries showed higher blood glutamate concentrations and longer durations of elevated levels. Although the increase in amplitude was similar between the two groups, the duration was longer in the patients with TBI.
View Article and Find Full Text PDF