Developing a colloidal quantum-dot light-emitting device (QDLED) with high efficiency and good reliability is necessarily preliminary for the next-generation high-quality display application. Most QDLED reports are focused on efficiency improvement, but the device operational lifetime issue is less addressed and also the relevant degradation mechanisms. This study achieved a 1.
View Article and Find Full Text PDFIn this study, we report on the application of a dielectric/ultra-thin metal/dielectric (DMD) multilayer consisting of ytterbium (Yb)-doped molybdenum oxide (MoO)/silver (Ag)/MoO stacked as the transparent cathode in top-emitting green quantum dot light-emitting diodes (QLED). By optimizing the Yb doping ratio, we have highly improved the electron injection ability from 0.01 to 0.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2019
In this report, we show that the annealing temperature in QDs/Mg-doped ZnO film plays a very important role in determining QLEDs performance. Measurements of capacitance and single carrier device reveal that the change of the device efficiency with different annealing temperatures is related to the balance of both electron and hole injection. A comparison of annealing temperatures shows that the best performance is demonstrated with 150 °C-annealing temperature.
View Article and Find Full Text PDFQuantum dot light-emitting diodes (QD-LEDs) have been considered as potential display technologies with the characterizations of high color purity, flexibility, transparency, and cost efficiency. For the practical applications, the development of heavy-metal-free QD-LEDs from environment-friendly materials is the most important issue to reduce the impacts on human health and environmental pollution. In this work, heavy-metal-free InP/ZnS core/shell QDs with different fluorescence were prepared by green synthesis method with low cost, safe, and environment-friendly precursors.
View Article and Find Full Text PDFOxovanadium(V) complexes and with general formula VO(L3*)(OR5) were prepared in quantitative yields in alcohol (R5OH) from reactions of VO(O-i-Pr)3 and tridentate Schiff bases of beta-amino alcohols having one or two stereogenic centers, (HO)C*(R1)(R2)C*H(R3)N[double bond, length as m-dash]CH(2-OH-3,5-R4(2)-C6H2) (H2L3*). The alkoxy OR5 ligand exchanges readily with the alcoholic molecule in the solvent. Crystal structures of and were determined to be five-coordinate square pyramidal monomers.
View Article and Find Full Text PDF