Research (Wash D C)
October 2024
Transmissive metasurfaces are essentially conducive to stealth, absorbers, and communications. However, most of the current schemes only allow microwave to transmit and generally adopt multilayer structures or thick dielectric substrates to improve the electromagnetic performance, restricting optical transmission and conformal application. In addition, most metasurfaces still require metal wires and external power suppliers for programmability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2023
Photon-electron interactions are essential for many areas such as energy conversion, signal processing, and emerging quantum science. However, the current demonstrations are typically targeted to fiber and on-chip applications and lack of study in wave space. Here, we introduce a concept of optoelectronic metasurface that is capable of realizing direct and efficient optical-microwave interactions in free space.
View Article and Find Full Text PDFSignal conversion plays an important role in many applications such as communication, sensing, and imaging. Realizing signal conversion between optical and microwave frequencies is a crucial step to construct hybrid communication systems that combine both optical and microwave wireless technologies to achieve better features, which are highly desirable in the future wireless communications. However, such a signal conversion process typically requires a complicated relay to perform multiple operations, which will consume additional hardware/time/energy resources.
View Article and Find Full Text PDFInvisibility cloaks, a class of attractive devices that can hide objects from external observers, have become practical reality owing to the advent of metamaterials. In previous cloaking schemes, almost all demonstrated cloaks are time-invariant and are investigated in the system that is motionless, and hence they are limited to hide stationary objects. In addition, the current cloaks are typically static or require manual operation to achieve dynamic cloaking.
View Article and Find Full Text PDFProgrammable metasurfaces allow dynamic and real-time control of electromagnetic (EM) waves in subwavelength resolution, holding extraordinary potentials to establish meta-systems. Achieving independent and real-time controls of orthogonally-polarized EM waves via the programmable metasurface is attractive for many applications, but remains considerably challenging. Here, a polarization-controlled dual-programmable metasurface (PDPM) with modular control circuits is proposed, which enables a dibit encoding capability in modifying the phase profiles of - and -polarized waves individually.
View Article and Find Full Text PDFProgrammable metasurface enables controlling electromagnetic (EM) waves in real time. By programming the states of active device embedded in metasurface element, the EM properties of the digital metasurface can be changed quickly without redesigning their structures. However, large numbers of long-distance wires are required to connect the programmable metasurface to provide the coded signals from field programmable gate array (FPGA) when controlling the metasurface at a long distance, which is complicated and inconvenient.
View Article and Find Full Text PDFJ Microbiol Biotechnol
November 2018