The quantification of trace nucleic acids in biological samples is a frequent requirement in experimental and clinical diagnostics. Here, we present a protocol for the digital quantification of multiple nucleic acid targets with droplet microfluidics-based loop-mediated isothermal amplification (dLAMP). Our protocol provides a fundamental platform for the absolute quantification of multiple nucleic acid targets with high specificity, allowing readily adaption in various diagnostic settings.
View Article and Find Full Text PDFHighly sensitive digital nucleic acid techniques are of great significance for the prevention and control of epidemic diseases. Here we report the development of multiplexed droplet loop-mediated isothermal amplification (multiplexed dLAMP) with scorpion-shaped probes (SPs) and fluorescence microscopic counting for simultaneous quantification of multiple targets. A set of target-specific fluorescence-activable SPs are designed, which allows establishment of a novel multiplexed LAMP strategy for simultaneous detection of multiple cDNA targets.
View Article and Find Full Text PDFIntracellular delivery of enzymes is essential for protein-based diagnostic and therapeutic applications. Protein-spherical nucleic acids (ProSNAs) defined by protein core and dense shell of oligonucleotides have been demonstrated as a promising vehicle-free enzyme delivery platform. In this work, we reported a crosslinking strategy to vastly improve both delivery efficiency and intracellular sensor performance of ProSNA.
View Article and Find Full Text PDFPlasmid pBLGC containing chitinase gene from Phaseolus limensis and beta-1,3-glucanase gene from Nicotiana tabacum was bombarded into the restorer line "Nan29" of Dian-type hybrid rice (Oryza sativa L. ssp. japonica) from Yunnan province of South-west China.
View Article and Find Full Text PDF