Heterotrophic nitrification remains a mystery for decades. It has been commonly hypothesized that heterotrophic nitrifiers oxidize ammonia to hydroxylamine and then to nitrite in a way similar to autotrophic AOA and AOB. Recently, heterotrophic nitrifiers from Alcaligenes were found to oxidize ammonia to hydroxylamine and then to N2 ("dirammox", direct ammonia oxidation) by the gene cluster dnfABC with a yet-to-be-reported mechanism.
View Article and Find Full Text PDFNitrogen (N) gas in the atmosphere is partially replenished by microbial denitrification of ammonia. Recent study has shown that Alcaligenes ammonioxydans oxidizes ammonia to dinitrogen via a process featuring the intermediate hydroxylamine, termed "Dirammox" (direct ammonia oxidation). However, the unique biochemistry of this process remains unknown.
View Article and Find Full Text PDFThe order Sulfolobales (phylum Crenarchaeota) is a group of thermoacidophilic archaea. The first member of the Sulfolobales was discovered in 1972, and current 23 species are validly named under the International Code of Nomenclature of Prokaryotes. The majority of members of the Sulfolobales is obligately or facultatively chemolithoautotrophic.
View Article and Find Full Text PDFMembers of the genus are widely found in sulfur-rich and metal-laden environments, but their physiological and ecological roles remain poorly understood. Here, we sequenced Ric-A, a strain isolated from the Tengchong hot spring in Yunnan Province, China, and performed a comparative genome analysis with other genomes. The genome of had an average nucleotide identity (ANI) of approximately 70% to that of .
View Article and Find Full Text PDFMicroorganisms in wastewater treatment plants (WWTPs) play a key role in the removal of pollutants from municipal and industrial wastewaters. A recent study estimated that activated sludge from global municipal WWTPs harbors 1 × 10 to 2 × 10 microbial species, the majority of which have not yet been cultivated, and 28 core taxa were identified as "most-wanted" ones (L. Wu, D.
View Article and Find Full Text PDF