Publications by authors named "Ya-Jen Cheng"

Oxygen plays a critical role in early neural development in brains, particularly before establishment of complete vasculature; however, it has seldom been investigated due to technical limitations. This study uses an in vitro human cerebral organoid model with multiomic analysis, integrating advanced microscopies and single-cell RNA sequencing, to monitor tissue oxygen tension during neural development. Results reveal a key period between weeks 4 and 6 with elevated intra-organoid oxygen tension, altered energy homeostasis, and rapid neurogenesis within the organoids.

View Article and Find Full Text PDF

The assembly and disassembly of biomolecular condensates are crucial for the subcellular compartmentalization of biomolecules in the control of cellular reactions. Recently, a correlation has been discovered between the phase transition of condensates and their maturation (aggregation) process in diseases. Therefore, modulating the phase of condensates to unravel the roles of condensation has become a matter of interest.

View Article and Find Full Text PDF

This study uses a resource perspective that combines theories used commonly to explore recovery experiences as a theoretical framework and investigate the effects of recovery at the beginning of the workday on exhaustion and vigour at the end of the workday, with workflow in the morning as a mediator. An experience sampling method was used to collect data from 84 fulltime employees. Participants received three survey links each workday over a 2-week period, resulting in 837 days-level and 2517 data points.

View Article and Find Full Text PDF

Expansion microscopy, whereby the relative positions of biomolecules are physically increased via hydrogel expansion, can be used to reveal ultrafine structures of cells under a conventional microscope. Despite its utility for achieving super-resolution imaging, expansion microscopy suffers a major drawback, namely reduced fluorescence signals caused by excessive proteolysis and swelling effects. This caveat results in a lower photon budget and disfavors fluorescence imaging over a large field of view that can cover an entire expanded cell, especially in 3D.

View Article and Find Full Text PDF

Sprouting angiogenesis is an essential process for expanding vascular systems under various physiological and pathological conditions. In this paper, a microfluidic device capable of integrating a hydrogel matrix for cell culture and generating stable oxygen gradients is developed to study the sprouting angiogenesis of endothelial cells under combinations of oxygen gradients and co-culture of fibroblast cells. The endothelial cells can be cultured as a monolayer endothelium inside the device to mimic an existing blood vessel, and the hydrogel without or with fibroblast cells cultured in it provides a matrix next to the formed endothelium for three-dimensional sprouting of the endothelial cells.

View Article and Find Full Text PDF

Odysseus (OdsH) has been identified as a hybrid male sterility gene between Drosophila mauritiana and D. simulans with accelerated evolutionary rate in both expression and DNA sequence. Loss of a testis-specific expression of OdsH causes male fertility defect in D.

View Article and Find Full Text PDF

Postmating reproductive isolation is often manifested as hybrid male sterility, for which X-linked genes are overrepresented (the so-called large X effect). In contrast, X-linked genes are significantly under-represented among testis-expressing genes. This seeming contradiction may be germane to the X:autosome imbalance hypothesis on hybrid sterility, in which the X-linked effect is mediated mainly through the misexpression of autosomal genes.

View Article and Find Full Text PDF