Publications by authors named "Ya-Chi Ho"

HIV infection exerts profound and long-lasting neurodegenerative effects on the central nervous system (CNS) that can persist despite antiretroviral therapy (ART). Here, we used single-nucleus multiome sequencing to map the transcriptomic and epigenetic landscapes of postmortem human brains from 13 healthy individuals and 20 individuals with HIV who have a history of treatment with ART. Our study spanned three distinct regions-the prefrontal cortex, insular cortex, and ventral striatum-enabling a comprehensive exploration of region-specific and cross-regional perturbations.

View Article and Find Full Text PDF

Cytotoxic T-lymphocytes (CTL) exert sustained pressure on reservoirs of HIV-infected cells that persist through years of antiretroviral therapy (ART). This selects for latently infected cells, but also potentially for cells that express HIV but possess intrinsic CTL resistance. We demonstrate that such resistance exists in HIV-infected CD4 T-cells that survive rigorous CTL attack and map CTL susceptibility to cell identities and states defined by single-cell multi-omics and functional metabolic profiling.

View Article and Find Full Text PDF

Transcription repressor BACH2 redirects short-lived terminally differentiated effector into long-lived memory cells. We postulate that BACH2-mediated long-lived memory programs promote HIV-1 persistence in gut CD4+ T cells. We coupled single-cell DOGMA-seq and TREK-seq to capture chromatin accessibility, transcriptome, surface proteins, T cell receptor, HIV-1 DNA and HIV-1 RNA in 100,744 gut T cells from ten aviremic HIV-1+ individuals and five HIV-1- donors.

View Article and Find Full Text PDF

The prevalence of obesity in the United States has continued to increase over the past several decades. Understanding how diet-induced obesity modulates mucosal immunity is of clinical relevance. We previously showed that consumption of a high fat, high sugar "Western" diet (WD) reduces the density and function of small intestinal Paneth cells, a small intestinal epithelial cell type with innate immune function.

View Article and Find Full Text PDF

Traditional Chinese medicine (TCM) has relied on pulse diagnosis as a cornerstone of healthcare assessment for thousands of years. Despite its long history and widespread use, TCM pulse diagnosis has faced challenges in terms of diagnostic accuracy and consistency due to its dependence on subjective interpretation and theoretical analysis. This study introduces an approach to enhance the accuracy of TCM pulse diagnosis for diabetes by leveraging the power of deep learning algorithms, specifically LeNet and ResNet models, for pulse waveform analysis.

View Article and Find Full Text PDF
Article Synopsis
  • - Substance use disorders (SUD) and drug addiction significantly impact public health, particularly among individuals and their communities, with a notable overlap between SUD and human immunodeficiency virus (HIV) infections.
  • - The connection between SUD and HIV is complex, as HIV can increase the risk of SUD through chronic pain treatment, while those with SUD are more likely to contract HIV, highlighting the need for integrated research.
  • - The SCORCH consortium aims to utilize single-cell genomics to examine the interactions between SUD and HIV at a cellular level, leveraging human brain tissue collections and animal models for in-depth study.
View Article and Find Full Text PDF

Understanding how HIV-1-infected cells proliferate and persist is key to HIV-1 eradication, but the heterogeneity and rarity of HIV-1-infected cells hamper mechanistic interrogations. Here, we used single-cell DOGMA-seq to simultaneously capture transcription factor accessibility, transcriptome, surface proteins, HIV-1 DNA, and HIV-1 RNA in memory CD4 T cells from six people living with HIV-1 during viremia and after suppressive antiretroviral therapy. We identified increased transcription factor accessibility in latent HIV-1-infected cells (RORC) and transcriptionally active HIV-1-infected cells (interferon regulatory transcription factor [IRF] and activator protein 1 [AP-1]).

View Article and Find Full Text PDF

HIV-1 reverse transcriptase (RT) remains a key target for HIV drug development. As successful management of the disease requires lifelong treatment, the emergence of resistance mutations is inevitable, making development of new RT inhibitors, which remain effective against resistant variants crucial. To this end, previous computationally guided drug design efforts have resulted in catechol diether compounds, which inhibit wildtype RT with picomolar affinities and appear to be promising preclinical candidates.

View Article and Find Full Text PDF
Article Synopsis
  • The review emphasizes the importance of understanding HIV-1-infected cells for effective eradication strategies, highlighting their extreme heterogeneity and rarity.
  • Recent advancements in single-cell multiomic methods revealed significant insights into HIV-1 reservoir profiling at epigenetic, transcriptional, and protein levels, unveiling the complexities of infected cells.
  • The combination of various single-cell techniques promises to uncover new mechanisms for HIV-1 persistence, which could lead to better therapeutic strategies and accelerated research discoveries.
View Article and Find Full Text PDF

HIV-1 integration introduces ectopic transcription factor binding sites into host chromatin. We postulate that the integrated provirus serves as an ectopic enhancer that recruits additional transcription factors to the integration locus, increases chromatin accessibility, changes 3D chromatin interactions, and enhances both retroviral and host gene expression. We used four well-characterized HIV-1-infected cell line clones having unique integration sites and low to high levels of HIV-1 expression.

View Article and Find Full Text PDF

Plaza-Jennings et al. applied single-nucleus RNA-seq, sorted neuronal and microglia cells for HiC, and found that chronic HIV infection in the brain induces interferon stimulation in microglia, drives chromatin reconfiguration into a transcriptionally active environment, and changes HIV integration landscape.

View Article and Find Full Text PDF

Despite effective antiretroviral therapy, HIV-1 persistence in latent reservoirs remains a major obstacle to a cure. We postulate that HIV-1 silencing factors suppress HIV-1 reactivation and that inhibition of these factors will increase HIV-1 reactivation. To identify HIV-1 silencing factors, we conducted a genome-wide CRISPR inhibition (CRISPRi) screen using four CRISPRi-ready, HIV-1-d6-GFP-infected Jurkat T cell clones with distinct integration sites.

View Article and Find Full Text PDF

Using a replication-competent virus for prolonged culture, Matsuda et al. captured the heterogenous HIV-1 genome and integration site landscape, examined viral cytopathic effects and clonal expansion capacity, and tested drugs that can eliminate HIV-1-infected cells.

View Article and Find Full Text PDF

HIV-1 infection is incurable due to the persistence of the virus in a latent reservoir of resting memory CD4+ T cells. “Shock-and-kill” approaches that seek to induce HIV-1 gene expression, protein production, and subsequent targeting by the host immune system have been unsuccessful due to a lack of effective latency-reversing agents (LRAs) and kill strategies. In an effort to develop reagents that could be used to promote killing of infected cells, we constructed T cell receptor (TCR)-mimic antibodies to HIV-1 peptide-major histocompatibility complexes (pMHC).

View Article and Find Full Text PDF

Understanding the drivers and markers of clonally expanding HIV-1-infected CD4 T cells is essential for HIV-1 eradication. We used single-cell ECCITE-seq, which captures surface protein expression, cellular transcriptome, HIV-1 RNA, and TCR sequences within the same single cell to track clonal expansion dynamics in longitudinally archived samples from six HIV-1-infected individuals (during viremia and after suppressive antiretroviral therapy) and two uninfected individuals, in unstimulated conditions and after CMV and HIV-1 antigen stimulation. Despite antiretroviral therapy, persistent antigen and TNF responses shaped T cell clonal expansion.

View Article and Find Full Text PDF

The shock-and-kill strategy reactivates HIV-1 latent reservoir for immune clearance. Einkauf et al. found that some HIV-1-infected cells that persist and proliferate have transcriptionally active HIV-1 in permissive chromatin.

View Article and Find Full Text PDF

Background: Opioid use disorder (OUD) negatively impacts the HIV continuum of care for persons living with HIV (PLH). Medication treatment for OUD (MOUD) may have differential biological effects in individuals with HIV and OUD. To understand the role of MOUD - opioid agonist methadone, partial agonist buprenorphine and antagonist naltrexone - in HIV-1 persistence and reactivation, we will use molecular virology approaches to carry out the first prospective, longitudinal studies of adults living with HIV with OUD initiating MOUD.

View Article and Find Full Text PDF

More than 50% of the HIV-1 latent reservoir is maintained by clonal expansion. The clonally expanded HIV-1-infected cells can contribute to persistent nonsuppressible low-level viremia and viral rebound. HIV-1 integration site and proviral genome landscape profiling reveals the clonal expansion dynamics of HIV-1-infected cells.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2 requires a specific process called -1 ribosomal frameshift (PRF) for translation of a key protein, facilitated by an RNA structure known as a pseudoknot.
  • Researchers found that the antibiotic merafloxacin can inhibit this -1 PRF, effectively disrupting SARS-CoV-2 replication, and it works even in the presence of mutations in the pseudoknot.
  • This study suggests that targeting -1 PRF could be a promising antiviral approach not just for SARS-CoV-2, but also for other related coronaviruses.
View Article and Find Full Text PDF
Article Synopsis
  • Measuring the HIV-1 latent reservoir is crucial for developing effective HIV-1 cure strategies.
  • Levy et al. created a new testing method called multiplex droplet digital PCR (ddPCR).
  • This assay focuses on five specific targets of intact proviral DNA to detect various parts of the HIV-1 genome, enhancing the accuracy of measurements.
View Article and Find Full Text PDF

HIV transcription requires assembly of cellular transcription factors at the HIV-1promoter. The TFIIH general transcription factor facilitates transcription initiation by opening the DNA strands around the transcription start site and phosphorylating the C-terminal domain for RNA polymerase II (RNAPII) for activation. Spironolactone (SP), an FDA approved aldosterone antagonist, triggers the proteasomal degradation of the XPB subunit of TFIIH, and concurrently suppresses acute HIV infection Here we investigated SP as a possible block-and-lock agent for a functional cure aimed at the transcriptional silencing of the viral reservoir.

View Article and Find Full Text PDF

Purpose Of Review: CD4 T cell loss is the hallmark of uncontrolled HIV-1 infection. Strikingly, CD4 T cell depletion is a strong indicator for disease severity in the recently emerged coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We reviewed recent single-cell immune profiling studies in HIV-1 infection and COVID-19 to provide critical insight in virus-induced immunopathogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Therapeutic strategies are being tested to either eliminate latent HIV reservoirs or manage the virus without antiretroviral therapy.
  • Achieving effective measurement of persistently infected cells is crucial to evaluate the success of potential cure strategies after stopping treatment.
  • The BEAT-HIV Martin Delaney Collaboratory offers recommendations on prioritizing specific viral measurements for clinical trials aimed at curing HIV.
View Article and Find Full Text PDF

Despite effective antiretroviral therapy, HIV-1-infected cells continue to produce viral antigens and induce chronic immune exhaustion. We propose to identify HIV-1-suppressing agents that can inhibit HIV-1 reactivation and reduce HIV-1-induced immune activation. Using a newly developed dual-reporter system and a high-throughput drug screen, we identified FDA-approved drugs that can suppress HIV-1 reactivation in both cell line models and CD4+ T cells from virally suppressed HIV-1-infected individuals.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9icr43pa0fdr4djchs0hgd6bv7unjlte): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once