In clinical settings, rapid and accurate diagnosis of antibiotic resistance is essential for the efficient treatment of bacterial infections. Conventional methods for antibiotic resistance testing are time consuming, while molecular methods such as PCR-based testing might not accurately reflect phenotypic resistance. Thus, fast and accurate methods for the analysis of bacterial antibiotic resistance are in high demand for clinical applications.
View Article and Find Full Text PDFRaman spectroscopy (RS) is a widely used analytical technique based on the detection of molecular vibrations in a defined system, which generates Raman spectra that contain unique and highly resolved fingerprints of the system. However, the low intensity of normal Raman scattering effect greatly hinders its application. Recently, the newly emerged surface enhanced Raman spectroscopy (SERS) technique overcomes the problem by mixing metal nanoparticles such as gold and silver with samples, which greatly enhances signal intensity of Raman effects by orders of magnitudes when compared with regular RS.
View Article and Find Full Text PDFInfectious diseases caused by bacterial pathogens are important public issues. In addition, due to the overuse of antibiotics, many multidrug-resistant bacterial pathogens have been widely encountered in clinical settings. Thus, the fast identification of bacteria pathogens and profiling of antibiotic resistance could greatly facilitate the precise treatment strategy of infectious diseases.
View Article and Find Full Text PDF