The magnetic and magnetothermal properties of holmium single crystal have been investigated from 4.2 to 300 K in magnetic fields up to 100 kOe using magnetization and heat capacity data measured along the easy magnetization direction, which is the crystallographic b-axis, i.e.
View Article and Find Full Text PDFThe magnetic and magnetothermal properties of a high purity terbium single crystal have been re-investigated from 1.5 to 350 K in magnetic fields ranging from 0 to 75 kOe using magnetization, ac magnetic susceptibility and heat capacity measurements. The magnetic phase diagram has been refined by establishing a region of the fan-like phase broader than reported in the past, by locating a tricritical point at 226 K, and by a more accurate definition of the critical fields and temperatures associated with the magnetic phases observed in Tb.
View Article and Find Full Text PDFX-ray magnetic circular dichroism (XMCD) measurements and density functional theory (DFT) are used to study the electronic conduction states in Gd5(Ge(1-x)Si(x))4 materials through the first-order bond-breaking magnetostructural transition responsible for their giant magnetocaloric effect. Spin-dependent hybridization between Ge 4p and Gd 5d conduction states, which XMCD senses through the induced magnetic polarization in Ge ions, enables long-range Ruderman-Kittel-Kasuya-Yosida ferromagnetic interactions between Gd 4f moments in adjacent Gd slabs connected by Ge(Si) bonds. These interactions are strong below but weaken above the Ge(Si) bond-breaking transition that destroys 3D ferromagnetic order.
View Article and Find Full Text PDF