Viral vectors and lipofection-based gene therapies have dispersion-dependent transduction/transfection profiles that thwart precise targeting. The study describes the development of focused close-field gene electrotransfer (GET) technology, refining spatial control of gene expression. Integration of fluidics for precise delivery of "naked" plasmid deoxyribonucleic acid (DNA) in sucrose carrier within the focused electric field enables negative biasing of near-field conductivity ("conductivity-clamping"-CC), increasing the efficiency of plasma membrane molecular translocation.
View Article and Find Full Text PDFThe emergence of therapeutics targeted at hearing loss holds great promise in the development of novel treatments for this heterogenous condition. Whilst such therapeutics are largely designed to be efficacious in and of themselves, the possibility of combination with devices, namely cochlear implants, could result in much more effective treatment options. Here, we review the otoprotective molecules currently in clinical development, as well as generic steroids, discussing mechanisms of action and mode of delivery to the perilymph of the cochlea.
View Article and Find Full Text PDF. Established guidelines for safe levels of electrical stimulation for neural prostheses are based on a limited range of the stimulus parameters used clinically. Recent studies have reported particulate platinum (Pt) associated with long-term clinical use of these devices, highlighting the need for more carefully defined safety limits.
View Article and Find Full Text PDFObjective: Cochleae of long-term cochlear implant users have shown evidence of particulate platinum (Pt) corroded from the surface of Pt electrodes. The pathophysiological effect of Pt within the cochlea has not been extensively investigated. We previously evaluated the effects of Pt corrosion at high charge densities and reported negligible pathophysiological impact.
View Article and Find Full Text PDFObjective: This study evaluated subthreshold biphasic stimulation pulses as a strategy to stabilize electrode impedance via control of protein adsorption. Following implantation, cochlear electrodes undergo impedance fluctuations thought to be caused by protein adsorption and/or inflammatory responses. Impedance increases can impact device power consumption, safe charge injection limits, and long-term stability of electrodes.
View Article and Find Full Text PDFThis Review outlines the development of DNA-based therapeutics for treatment of hearing loss, and in particular, considers the potential to utilize the properties of recombinant neurotrophins to improve cochlear auditory (spiral ganglion) neuron survival and repair. This potential to reduce spiral ganglion neuron death and indeed re-grow the auditory nerve fibres has been the subject of considerable pre-clinical evaluation over decades with the view of improving the neural interface with cochlear implants. This provides the context for discussion about the development of a novel means of using cochlear implant electrode arrays for gene electrotransfer.
View Article and Find Full Text PDFObjective: Although there are useful guidelines defining the boundary between damaging and non-damaging electrical stimulation they were derived from acute studies using large surface area electrodes in direct contact with cortical neurons. These parameters are a small subset of the parameters used by neural stimulators. More recently, histological examination of cochleae from patients that were long-term cochlear implant users have shown evidence of particulate platinum (Pt).
View Article and Find Full Text PDFCochlear Implants Int
January 2019
Objective: To compare the benefits of a dexamethasone-eluting array for hearing preservation and cochlear histopathology in low trauma (soft-surgery) and high trauma models of cochlear implant surgery.
Methods: Adult guinea pigs were implanted with an intra-cochlear array using two different surgical procedures: either a soft-surgery approach or following generation of electrode insertion trauma (high trauma). Two methods of dexamethasone delivery were evaluated: elution from an electrode array alone, and elution from a cochlear implant electrode array in combination with a pre-operative systemic injection.
Objectives/hypothesis: Biological components of perilymph affect the electrical performance of cochlear implants. Understanding the perilymph composition of common animal models will improve the understanding of this impact and improve the interpretation of results from animal studies and how it relates to humans.
Study Design: Analysis and comparison of the proteomes of human, guinea pig, and cat perilymph.
Objective: Cochlear implants (CIs) have a limited number of independent stimulation channels due to the highly conductive nature of the fluid-filled cochlea. Attempts to develop highly focused stimulation to improve speech perception in CI users includes the use of simultaneous stimulation via multiple current sources. Focused multipolar (FMP) stimulation is an example of this approach and has been shown to reduce interaction between stimulating channels.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Cochlear implants operate within a bony channel of the cochlea, bathed in a fluid known as the perilymph. The perilymph is a complex fluid containing ions and proteins, which are known to actively interact with metallic electrodes. To improve our understanding of how cochlear implant performance varies in preclinical in vivo studies in comparison to human trials and patient outcomes, the protein composition (or perilymph proteome) is needed.
View Article and Find Full Text PDFObjectives: To evaluate the potential risk of pneumococcal meningitis associated with the use of a dexamethasone-eluting intracochlear electrode array as compared with a control array.
Methods: In two phases, adult Hooded-Wistar rats were implanted via the middle ear with an intracochlear array and were inoculated with Streptococcus pneumoniae 5 days post-surgery. Phase I created a dosing curve by implanting five groups (n = 6) with a control array, then inoculating 5 days later with different numbers of S.
Cochlear Implants Int
September 2014
Objectives: Cochlear implantation can result in trauma leading to increased tissue response and loss of residual hearing. A single intratympanic application of the corticosteroid dexamethasone is sometimes used clinically during surgery to combat the potential effect of trauma on residual hearing. This project looked at the safety and efficacy of dexamethasone eluted from an intracochlear array in vivo.
View Article and Find Full Text PDF