Publications by authors named "YJ Kao"

Background: This study aimed to investigate the long-term effects of repetitive mild traumatic brain injury (rmTBI) with varying inter-injury intervals by measuring diffusion tensor metrics, including mean diffusivity (MD), fractional anisotropy (FA), and diffusion magnitude (L) and pure anisotropy (q).

Methods: Eighteen rats were randomly divided into three groups: short-interval rmTBI (n = 6), long-interval rmTBI (n = 6), and sham controls (n = 6). MD, FA, L, and q values were analyzed from longitudinal diffusion tensor imaging at days 50 and 90 after rmTBI.

View Article and Find Full Text PDF

Objective: Diabetic patients often experience chronic inflammation and fibrosis in their cardiac tissues, highlighting the pressing need for the development of sensitive diagnostic methods for longitudinal assessment of diabetic cardiomyopathy. This study aims to evaluate the significance of an inflammatory marker known as translocator protein (TSPO) in a positron emission tomography (PET) protocol for longitudinally monitoring cardiac dysfunction in a diabetic animal model. Additionally, we compared the commonly used radiotracer, F-fluoro-2-deoxy-d-glucose (F-FDG).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how varying concentrations of bis-(3-sulfopropyl) disulfide (SPS) in electroplated copper (Cu) foils impact their mechanical properties, particularly during tensile tests.
  • It finds that the SPS concentration influences the grain size of the Cu foils, which is crucial for their reliability in electronic packaging applications.
  • The research highlights a significant Hall-Petch effect, where changes in grain size due to SPS impurities lead to different fracture behaviors in the material.
View Article and Find Full Text PDF

The dynamic vascular responses during cortical spreading depolarization (CSD) are causally related to pathophysiological consequences in numerous neurovascular conditions, including ischemia, traumatic brain injury, cerebral hemorrhage, and migraine. Monitoring of the hemodynamic responses of cerebral penetrating vessels during CSD is motivated to understand the mechanism of CSD and related neurological disorders. Six SD rats were used, and craniotomy surgery was performed before imaging.

View Article and Find Full Text PDF

Understanding how excitable cells work in health and disease and how that behavior can be altered by small molecules or genetic manipulation is important. Genetically encoded calcium indicators (GECIs) with multiple emission windows can be combined (e.g.

View Article and Find Full Text PDF

Background: Repetitive transcranial magnetic stimulation (rTMS) has shown promising efficacy in improving the language functions in poststroke aphasia. However, randomized controlled trials were lacking to investigate the rTMS-related neuroimaging changes underlying the therapeutic effects on language improvement in chronic aphasia.

Objective: In this study, we aimed to evaluate the effects of low-frequency rTMS (LF-rTMS) on chronic poststroke aphasia.

View Article and Find Full Text PDF

We generalize a tensor-network algorithm to study the thermodynamic properties of self-similar spin lattices constructed on a square-lattice frame with two types of couplings, J_{1}^{} and J_{2}^{}, chosen to transform a regular square lattice (J_{1}^{}=J_{2}^{}) onto a fractal lattice if decreasing J_{2}^{} to zero (the fractal fully reconstructs when J_{2}^{}=0). We modified the higher-order tensor renormalization group (HOTRG) algorithm for this purpose. Single-site measurements are performed by means of so-called impurity tensors.

View Article and Find Full Text PDF

Background: Although changes in diffusion characteristics of the brain parenchyma in neurological disorders are widely studied and used in clinical practice, the change in diffusivity in the cerebrospinal fluid (CSF) system is rarely reported. In this study, free water diffusion in the subarachnoid cisterns and ventricles of the rat brain was examined using diffusion magnetic resonance imaging (MRI), and the effects of neurological disorders on diffusivity in CSF system were investigated.

Methods: Diffusion MRI and T-weighted images were obtained in the intact rats, 24 h after ischemic stroke, and 50 days after mild traumatic brain injury (mTBI).

View Article and Find Full Text PDF

Hypoxic ischaemia encephalopathy is the major cause of brain injury in new-borns. However, to date, useful biomarkers which may be used to early predict neurodevelopmental impairment for proper commencement of hypothermia therapy is still lacking. This study aimed to determine whether the early neuroimaging characteristics and ultrastructural correlates were associated with different injury progressions and brain damage severity outcomes after neonatal hypoxic ischaemia.

View Article and Find Full Text PDF

Quantum entanglement is fragile to thermal fluctuations, which raises the question whether finite temperature phase transitions support long-range entanglement similar to their zero temperature counterparts. Here we use quantum Monte Carlo simulations to study the third Renyi negativity, a generalization of entanglement negativity, as a proxy of mixed-state entanglement in the 2D transverse field Ising model across its finite temperature phase transition. We find that the area-law coefficient of the Renyi negativity is singular across the transition, while its subleading constant is zero within the statistical error.

View Article and Find Full Text PDF

P-selectin overexpressed on activated endothelial cells and platelets is a new target for treatment of cancers and cardiovascular diseases such as atherosclerosis and thrombosis. In this study, depolymerized low molecular weight fucoidan (LMWF) and a thermolysin-hydrolyzed protamine peptide (TPP) were prepared. TPP and LMWF were able to form self-assembled complex nanoparticles (CNPs).

View Article and Find Full Text PDF

Background: Recent trials have shown promise in intra-arterial thrombectomy after the first 6-24 h of stroke onset. Quick and precise identification of the salvageable tissue is essential for successful stroke management. In this study, we examined the feasibility of machine learning (ML) approaches for differentiating the ischemic penumbra (IP) from the infarct core (IC) by using diffusion tensor imaging (DTI)-derived metrics.

View Article and Find Full Text PDF

Purpose: Radiotherapy is an effective treatment for many types of cancer in clinical settings. Gel dosimetry has the potential to record three-dimensional (3D) dose distribution compared to a conventional ion chamber. As the elasticity of the gel is altered after irradiation due to gel polymerization, we aim to measure the dose recorded in gel dosimetry with ultrasonic shear wave elasticity imaging (SWEI), a nondestructive and quantitative elasticity imaging tool.

View Article and Find Full Text PDF

We present a deep reinforcement learning framework where a machine agent is trained to search for a policy to generate a ground state for the square ice model by exploring the physical environment. After training, the agent is capable of proposing a sequence of local moves to achieve the goal. Analysis of the trained policy and the state value function indicates that the ice rule and loop-closing condition are learned without prior knowledge.

View Article and Find Full Text PDF

Background And Purpose: The effects of multiple head impacts, even without detectable primary injury, on subsequent behavioral impairment and structural abnormality is yet well explored. Our aim was to uncover the dynamic changes and long-term effects of single and repetitive head injury without focal contusion on tissue microstructure and macrostructure.

Materials And Methods: We introduced a repetitive closed-head injury rodent model ( = 70) without parenchymal lesions.

View Article and Find Full Text PDF

The new classification announced by the World Health Organization in 2016 recognized five molecular subtypes of diffuse gliomas based on isocitrate dehydrogenase (IDH) and 1p/19q genotypes in addition to histologic phenotypes. We aim to determine whether clinical MRI can stratify these molecular subtypes to benefit the diagnosis and monitoring of gliomas. The data from 456 subjects with gliomas were obtained from The Cancer Imaging Archive.

View Article and Find Full Text PDF

The driven-dissipative Bose-Hubbard model can be experimentally realized with either negative or positive onsite detunings, inter-site hopping energies, and onsite interaction energies. Here we use one-dimensional matrix product density operators to perform a fully quantum investigation of the dependence of the non-equilibrium steady states of this model on the signs of these parameters. Due to a symmetry in the Lindblad master equation, we find that simultaneously changing the sign of the interaction energies, hopping energies, and chemical potentials leaves the local boson number distribution and inter-site number correlations invariant, and the steady-state complex conjugated.

View Article and Find Full Text PDF

We carry out simulated annealing and employ a generalized Kibble-Zurek scaling hypothesis to study the two-dimensional Ising spin glass with normal-distributed couplings. The system has an equilibrium glass transition at temperature T=0. From a scaling analysis when T→0 at different annealing velocities v, we find power-law scaling in the system size for the velocity required in order to relax toward the ground state, v∼L^{-(z+1/ν)}, the Kibble-Zurek ansatz where z is the dynamic critical exponent and ν the previously known correlation-length exponent, ν≈3.

View Article and Find Full Text PDF

Background: Targeted superparamagnetic iron oxide (SPIO) nanoparticles have emerged as a promising biomarker detection tool for molecular magnetic resonance (MR) image diagnosis. To identify patients who could benefit from Epidermal growth factor receptor (EGFR)-targeted therapies, we introduce lipid-encapsulated SPIO nanoparticles and hypothesized that anti-EGFR antibody cetuximab conjugated of such nanoparticles can be used to identify EGFR-positive glioblastomas in non-invasive T MR image assays. The newly introduced lipid-coated SPIOs, which imitate biological cell surface and thus inherited innate nonfouling property, were utilized to reduce nonspecific binding to off-targeted cells and prevent agglomeration that commonly occurs in nanoparticles.

View Article and Find Full Text PDF

Directly in the thermodynamic limit, we show how to combine local imaginary and real-time evolution of tensor networks to efficiently and accurately find the nonequilibrium steady states (NESSs) of one-dimensional dissipative quantum lattices governed by a local Lindblad master equation. The imaginary time evolution first bypasses any highly correlated portions of the real-time evolution trajectory by directly converging to the weakly correlated subspace of the NESS, after which, real-time evolution completes the convergence to the NESS with high accuracy. We demonstrate the power of the method with the dissipative transverse field quantum Ising chain.

View Article and Find Full Text PDF

Background And Purpose: No studies have determined the effect of differences in pial collateral extent (number and diameter), independent of differences in environmental factors and unknown genetic factors, on severity of stroke. We examined ischemic tissue evolution during acute stroke, as measured by magnetic resonance imaging and histology, by comparing 2 congenic mouse strains with otherwise identical genetic backgrounds but with different alleles of the () genetic locus. We also optimized magnetic resonance perfusion and diffusion-deficit thresholds by using histological measures of ischemic tissue.

View Article and Find Full Text PDF

Objective: Liver fibrosis results from the wound healing response to chronic liver damage. Advanced liver fibrosis results in cirrhosis and liver failure, and liver transplantation is often the only option for effective therapy; however, the shortage of available donor livers limits this treatment. Thus, new therapies for advanced liver fibrosis are essential.

View Article and Find Full Text PDF

In the ground state of Ho2Ti2O7 spin ice, the disorder of the magnetic moments follows the same rules as the proton disorder in water ice. Excitations take the form of magnetic monopoles that interact via a magnetic Coulomb interaction. Muon spin rotation has been used to probe the low-temperature magnetic behaviour in single crystal Ho2-xYxTi2O7 (x = 0, 0.

View Article and Find Full Text PDF

Purpose: Optoacoustic tomography (OAT) is inherently a three-dimensional (3D) inverse problem. However, most studies of OAT image reconstruction still employ two-dimensional imaging models. One important reason is because 3D image reconstruction is computationally burdensome.

View Article and Find Full Text PDF