Publications by authors named "YA Pashkin"

On-chip demagnetization refrigeration has recently emerged as a powerful tool for reaching microkelvin electron temperatures in nanoscale structures. The relative importance of cooling on-chip and off-chip components and the thermal subsystem dynamics are yet to be analyzed. We study a Coulomb blockade thermometer with on-chip copper refrigerant both experimentally and numerically, showing that dynamics in this device are captured by a first-principles model.

View Article and Find Full Text PDF

One of the challenges in integrating nanomechanical resonators made from van der Waals materials in optoelectromechanical technologies is characterizing their dynamic properties from vibrational displacement. Multiple calibration schemes using optical interferometry have tackled this challenge. However, these techniques are limited only to optically thin resonators with an optimal vacuum gap height and substrate for interferometric detection.

View Article and Find Full Text PDF

Nanomechanical resonators made from van der Waals materials (vdW NMRs) provide a new tool for sensing absorbed laser power. The photothermal response of vdW NMRs, quantified from the resonant frequency shifts induced by optical absorption, is enhanced when incorporated in a Fabry-Pérot (FP) interferometer. Along with the enhancement comes the dependence of the photothermal response on NMR displacement, which lacks investigation.

View Article and Find Full Text PDF

Observation of resonance modes is the most straightforward way of studying mechanical oscillations because these modes have maximum response to stimuli. However, a deeper understanding of mechanical motion can be obtained by also looking at modal responses at frequencies in between resonances. Here, an imaging of the modal responses for a nanomechanical drum driven off resonance is presented.

View Article and Find Full Text PDF

Superconducting quantum devices offer numerous applications, from electrical metrology and magnetic sensing to energy-efficient high-end computing and advanced quantum information processing. The key elements of quantum circuits are (single and double) Josephson junctions controllable either by electric current or magnetic field. The voltage control, commonly used in semiconductor-based devices via the electrostatic field effect, would be far more versatile and practical.

View Article and Find Full Text PDF

Since we still lack a theory of classical turbulence, attention has focused on the conceptually simpler turbulence in quantum fluids. Reaching a better understanding of the quantum case may provide additional insight into the classical counterpart. That said, we have hitherto lacked detectors capable of the real-time, non-invasive probing of the wide range of length scales involved in quantum turbulence.

View Article and Find Full Text PDF

Microelectromechanical (MEMS) and nanoelectromechanical systems (NEMS) are ideal candidates for exploring quantum fluids, since they can be manufactured reproducibly, cover the frequency range from hundreds of kilohertz up to gigahertz and usually have very low power dissipation. Their small size offers the possibility of probing the superfluid on scales comparable to, and below, the coherence length. That said, there have been hitherto no successful measurements of NEMS resonators in the liquid phases of helium.

View Article and Find Full Text PDF

We demonstrate significant cooling of electrons in a nanostructure below 10 mK by demagnetisation of thin-film copper on a silicon chip. Our approach overcomes the typical bottleneck of weak electron-phonon scattering by coupling the electrons directly to a bath of refrigerated nuclei, rather than cooling via phonons in the host lattice. Consequently, weak electron-phonon scattering becomes an advant- age.

View Article and Find Full Text PDF

We report on a device that integrates eight superconducting transmon qubits in superconducting coplanar waveguide resonators fed from a common feedline. Using this multiplexing architecture, each resonator and qubit can be addressed individually, thus reducing the required hardware resources and allowing their individual characterisation by spectroscopic methods. The measured device parameters agree with the designed values, and the resonators and qubits exhibit excellent coherence properties and strong coupling, with the qubit relaxation rate dominated by the Purcell effect when brought in resonance with the resonator.

View Article and Find Full Text PDF

We report the single-electron tunneling behaviour of a silicon nanobridge where the effective island is a single As dopant atom. The device is a gated silicon nanobridge with a thickness and width of ∼20 nm, fabricated from a commercially available silicon-on-insulator wafer, which was first doped with As atoms and then patterned using a unique CMOS-compatible technique. Transport measurements reveal characteristic Coulomb diamonds whose size decreases with gate voltage.

View Article and Find Full Text PDF

Cooling nanoelectronic structures to millikelvin temperatures presents extreme challenges in maintaining thermal contact between the electrons in the device and an external cold bath. It is typically found that when nanoscale devices are cooled to ∼ 10 mK the electrons are significantly overheated. Here we report the cooling of electrons in nanoelectronic Coulomb blockade thermometers below 4 mK.

View Article and Find Full Text PDF

A hundred years after the discovery of superconductivity, one fundamental prediction of the theory, coherent quantum phase slip (CQPS), has not been observed. CQPS is a phenomenon exactly dual to the Josephson effect; whereas the latter is a coherent transfer of charges between superconducting leads, the former is a coherent transfer of vortices or fluxes across a superconducting wire. In contrast to previously reported observations of incoherent phase slip, CQPS has been only a subject of theoretical study.

View Article and Find Full Text PDF

We study dynamics of a two-level superconducting quantum system, analogous to a natural atom in an open space, by measuring the evolution of its coherent and incoherent emission. The emitted waves containing full information about the states of the artificial atom are efficiently collected due to strong atom-transmission-line coupling. This allows us to do simultaneous measurements of all the quantum state projections and perform a full characterization of the system.

View Article and Find Full Text PDF

We provide a direct proof of two-electron Andreev transitions in a superconductor-normal-metal tunnel junction by detecting them in a real-time electron counting experiment. Our results are consistent with ballistic Andreev transport with an order of magnitude higher rate than expected for a uniform barrier, suggesting that only part of the interface is effectively contributing to the transport. These findings are quantitatively supported by our direct current measurements in single-electron transistors with similar tunnel barriers.

View Article and Find Full Text PDF

We show that the effect of a high-temperature environment in current transport through a normal metal-insulator-superconductor tunnel junction can be described by an effective density of states in the superconductor. In the limit of a resistive low-Ohmic environment, this density of states reduces into the well-known Dynes form. Our theoretical result is supported by experiments in engineered environments.

View Article and Find Full Text PDF

We present experimental observation of electromagnetically induced transparency (EIT) on a single macroscopic artificial "atom" (superconducting quantum system) coupled to open 1D space of a transmission line. Unlike in an optical media with many atoms, the single-atom EIT in 1D space is revealed in suppression of reflection of electromagnetic waves, rather than absorption. The observed almost 100% modulation of the reflection and transmission of propagating microwaves demonstrates full controllability of individual artificial atoms and a possibility to manipulate the atomic states.

View Article and Find Full Text PDF

We report amplification of electromagnetic waves by a single artificial atom in open 1D space. Our three-level artificial atom--a superconducting quantum circuit--coupled to a transmission line presents an analog of a natural atom in open space. The system is the most fundamental quantum amplifier whose gain is limited by a spontaneous emission mechanism.

View Article and Find Full Text PDF

An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propagating waves by a single artificial atom. The behavior of the artificial atom, a superconducting macroscopic two-level system, is in a quantitative agreement with the predictions of quantum optics for a pointlike scatterer interacting with the electromagnetic field in one-dimensional open space.

View Article and Find Full Text PDF

We demonstrate experimentally that a hybrid single-electron transistor with superconducting leads and a normal-metal island can be refrigerated by an alternating voltage applied to the gate electrode. The simultaneous measurement of the dc current induced by the rf gate through the device at a small bias voltage serves as an in situ thermometer.

View Article and Find Full Text PDF

Solid-state superconducting circuits are versatile systems in which quantum states can be engineered and controlled. Recent progress in this area has opened up exciting possibilities for exploring fundamental physics as well as applications in quantum information technology; in a series of experiments it was shown that such circuits can be exploited to generate quantum optical phenomena, by designing superconducting elements as artificial atoms that are coupled coherently to the photon field of a resonator. Here we demonstrate a lasing effect with a single artificial atom--a Josephson-junction charge qubit--embedded in a superconducting resonator.

View Article and Find Full Text PDF

To verify the hypothesis about the common origin of the low-frequency 1/f noise and the quantum f noise recently measured in the Josephson charge qubits, we study the temperature dependence of the 1/f noise and decay of coherent oscillations. The T2 dependence of the 1/f noise is experimentally demonstrated, which supports the hypothesis. We also show that dephasing in the Josephson charge qubits off the electrostatic energy degeneracy point is consistently explained by the same low-frequency 1/f noise that is observed in the transport measurements.

View Article and Find Full Text PDF

We study decoherence of the Josephson charge qubit by measuring energy relaxation and dephasing with help of the single-shot readout. We found that the dominant energy relaxation process is a spontaneous emission induced by quantum noise coupled to the charge degree of freedom. Spectral density of the noise at high frequencies is roughly proportional to the qubit excitation energy.

View Article and Find Full Text PDF

Following the demonstration of coherent control of the quantum state of a superconducting charge qubit, a variety of qubits based on Josephson junctions have been implemented. Although such solid-state devices are not currently as advanced as microscopic qubits based on nuclear magnetic resonance and ion trap technologies, the potential scalability of the former systems--together with progress in their coherence times and read-out schemes--makes them strong candidates for the building block of a quantum computer. Recently, coherent oscillations and microwave spectroscopy of capacitively coupled superconducting qubits have been reported; the next challenging step towards quantum computation is the realization of logic gates.

View Article and Find Full Text PDF