Publications by authors named "Y-R Huang"

Medical research within areas of deep learning, particularly in computer vision for medical imaging, has shown promise over the past decade with an increasing volume of technical papers published in orthopaedics related to imaging artificial intelligence (AI). However, as more tools and models are developed and deployed, it is easy for clinicians to get overwhelmed with the different types of models, leaving "artificial intelligence" as an empty buzzword where true value can be unclear. As with surgery, the techniques of deep learning require thoughtful application and cannot follow a one-size-fits-all approach as different problems require differential levels of technical complexity with model application.

View Article and Find Full Text PDF

The recent worldwide outbreaks of mpox prioritize the development of a safe and effective mRNA vaccine. The contemporary mpox virus (MPXV) exhibits changing virological and epidemiological features, notably affecting populations already vulnerable to human immunodeficiency virus (HIV). Herein, we profile the immunogenicity of AR-MPXV5, a penta-component mRNA vaccine targeting five specific proteins (M1R, E8L, A29L, A35R, and B6R) from the representative contemporary MPXV clade II strain, in both naive and simian immunodeficiency virus (SIV)-infected nonhuman primates.

View Article and Find Full Text PDF

Purpose: To assess macular microstructural changes associated with internal limiting membrane peeling (ILMP) using 3-dimensional optical coherence tomography (3D-OCT) in primary macula-off rhegmatogenous retinal detachment (RRD) repairs with vitrectomy and silicone oil (SO) tamponade.

Design: Retrospective, consecutive, interventional case series.

Methods: Setting: Institutional practice.

View Article and Find Full Text PDF

The delicate balance between protective immunity against pathogens and the prevention of autoimmunity requires finely tuned generation and function of regulatory CD4 T (Treg) cells. Here, we review recent progress in the understanding of a complex set of cues, which converge on Treg cells in lymphoid and nonlymphoid organs and in tumors and how these cues modulate Treg functions. We highlight the versatility of Treg cells underlying their ability to dynamically adapt to local microenvironments and perform a wide range of functions that extend beyond the archetypal role of Treg cells in moderating adverse effects of immune response-associated inflammation and in suppressing autoimmunity.

View Article and Find Full Text PDF
Article Synopsis
  • Osimertinib is a targeted therapy for EGFR-mutated non-small cell lung cancer that was evaluated for its effectiveness and safety based on plasma concentration levels in a large clinical study involving 1,689 patients.* -
  • The analysis revealed that while osimertinib was more effective than other treatments regardless of dosage, there was no significant increase in efficacy with higher drug exposure, but a potential rise in side effects like interstitial lung disease, rash, and diarrhea.* -
  • Overall, the findings suggest that higher doses of osimertinib (≥80 mg) may not provide additional benefits in treatment efficacy but could lead to more severe adverse effects, particularly in certain patient subgroups.*
View Article and Find Full Text PDF

Background: Osimertinib is a recommended treatment for advanced non-small-cell lung cancer (NSCLC) with an epidermal growth factor receptor () mutation and as adjuvant treatment for resected -mutated NSCLC. EGFR tyrosine kinase inhibitors have shown preliminary efficacy in unresectable stage III -mutated NSCLC.

Methods: In this phase 3, double-blind, placebo-controlled trial, we randomly assigned patients with unresectable -mutated stage III NSCLC without progression during or after chemoradiotherapy to receive osimertinib or placebo until disease progression occurred (as assessed by blinded independent central review) or the regimen was discontinued.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer immunotherapy using autologous CAR T cells is complicated by manufacturing and patient selection issues, but 'off-the-shelf' options like allogeneic CAR-NKT cells could simplify the process.
  • Researchers developed a new method to produce high-yield IL-15-enhanced CAR-NKT cells that target multiple cancers, showing effectiveness in battling multiple myeloma and removing immunosuppressive cells from tumors.
  • The CAR-NKT cells demonstrated a stable hypoimmunogenic profile, meaning they are less likely to cause harmful immune reactions, making them promising candidates for clinical use without severe side effects like graft versus host disease.
View Article and Find Full Text PDF

The clinical potential of current FDA-approved chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy is encumbered by its autologous nature, which presents notable challenges related to manufacturing complexities, heightened costs, and limitations in patient selection. Therefore, there is a growing demand for off-the-shelf universal cell therapies. In this study, we have generated universal CAR-engineered NKT (CAR-NKT) cells by integrating iNKT TCR engineering and HLA gene editing on hematopoietic stem cells (HSCs), along with an ex vivo, feeder-free HSC differentiation culture.

View Article and Find Full Text PDF

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has affected approximately 800 million people since the start of the Coronavirus Disease 2019 (COVID-19) pandemic. Because of the high rate of mutagenesis in SARS-CoV-2, it is difficult to develop a sustainable approach for prevention and treatment. The Envelope (E) protein is highly conserved among human coronaviruses.

View Article and Find Full Text PDF

Water-based conductive inks are vital for the sustainable manufacturing and widespread adoption of organic electronic devices. Traditional methods to produce waterborne conductive polymers involve modifying their backbone with hydrophilic side chains or using surfactants to form and stabilize aqueous nanoparticle dispersions. However, these chemical approaches are not always feasible and can lead to poor material/device performance.

View Article and Find Full Text PDF

Background: The controversy surrounding Roux-en-Y (R-Y) and Billroth II with Braun (BII + B) reconstruction as an anti-bile reflux procedure after distal gastrectomy has persisted. Recent studies have demonstrated their efficacy, but the long-term outcomes and postoperative quality of life (QoL) among patients have yet to be evaluated. Therefore, we compared the short-term and long-term outcomes of the two procedures as well as QoL.

View Article and Find Full Text PDF

Comprehensive genotyping is necessary to identify therapy options for patients with advanced cancer; however, many cancers are not tested, partly because of tissue limitations. Next-generation sequencing (NGS) liquid biopsies overcome some limitations, but clinical validity is not established and adoption is limited. Herein, clinical bridging studies used pretreatment plasma samples and data from FLAURA (NCT02296125; n = 441) and AURA3 (NCT02151981; n = 450) pivotal studies to demonstrate clinical validity of Guardant360 CDx (NGS LBx) to identify patients with advanced EGFR mutant non-small-cell lung cancer who may benefit from osimertinib.

View Article and Find Full Text PDF

Deamidation, a common post-translational modification, may impact multiple physiochemical properties of a therapeutic protein. MEDI7247, a pyrrolobenzodiazepine (PBD) antibody-drug conjugate (ADC), contains a unique deamidation site, N102, located within the complementarity-determining region (CDR), impacting the affinity of MEDI7247 to its target. Therefore, it was necessary to monitor MEDI7247 deamidation status in vivo.

View Article and Find Full Text PDF

Introduction: Endoscopic evaluation is crucial for predicting the invasion depth of esophagus squamous cell carcinoma (ESCC) and selecting appropriate treatment strategies. Our study aimed to develop and validate an interpretable artificial intelligence-based invasion depth prediction system (AI-IDPS) for ESCC.

Methods: We reviewed the PubMed for eligible studies and collected potential visual feature indices associated with invasion depth.

View Article and Find Full Text PDF

Advanced mRNA vaccines play vital roles against SARS-CoV-2. However, most current mRNA delivery platforms need to be stored at -20 °C or -70 °C due to their poor stability, which severely restricts their availability. Herein, we develop a lyophilization technique to prepare SARS-CoV-2 mRNA-lipid nanoparticle vaccines with long-term thermostability.

View Article and Find Full Text PDF

The immunity of patients who recover from coronavirus disease 2019 (COVID-19) could be long lasting but persist at a lower level. Thus, recovered patients still need to be vaccinated to prevent reinfection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or its mutated variants. Here, we report that the inactivated COVID-19 vaccine can stimulate immunity in recovered patients to maintain high levels of anti-receptor-binding domain (RBD) and anti-nucleocapsid protein (NP) antibody titers within 9 months, and high neutralizing activity against the prototype, Delta, and Omicron strains was observed.

View Article and Find Full Text PDF
Article Synopsis
  • T cell receptors (TCRs) are crucial for T cells to detect cancer cell mutations, and researchers used a CRISPR-Cas9 method to edit TCR genes in a clinical trial setting.
  • Sixteen patients with advanced solid cancers received personalized T cell therapies featuring engineered neoTCRs, with most participants experiencing either stable disease or disease progression.
  • The study confirmed that it is feasible to create multiple engineered TCRs, showing the safety and effectiveness of infusing gene-edited T cells that can successfully target tumors.
View Article and Find Full Text PDF

AZD7442 (tixagevimab [AZD8895]/cilgavimab [AZD1061]) is a monoclonal antibody (mAb) combination in development for the prevention and treatment of coronavirus disease 2019. Traditionally, bioanalysis of mAbs is performed using ligand binding assays (LBAs), which offer sensitivity, robustness, and ease of implementation. However, LBAs frequently require generation of critical reagents that typically take several months.

View Article and Find Full Text PDF

The storage of facial images in medical records poses privacy risks due to the sensitive nature of the personal biometric information that can be extracted from such images. To minimize these risks, we developed a new technology, called the digital mask (DM), which is based on three-dimensional reconstruction and deep-learning algorithms to irreversibly erase identifiable features, while retaining disease-relevant features needed for diagnosis. In a prospective clinical study to evaluate the technology for diagnosis of ocular conditions, we found very high diagnostic consistency between the use of original and reconstructed facial videos (κ ≥ 0.

View Article and Find Full Text PDF

Mutations affecting isocitrate dehydrogenase (IDH) enzymes are prevalent in glioma, leukemia, and other cancers. Although mutant IDH inhibitors are effective against leukemia, they seem to be less active in aggressive glioma, underscoring the need for alternative treatment strategies. Through a chemical synthetic lethality screen, we discovered that IDH1-mutant glioma cells are hypersensitive to drugs targeting enzymes in the de novo pyrimidine nucleotide synthesis pathway, including dihydroorotate dehydrogenase (DHODH).

View Article and Find Full Text PDF

Background: Familial hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and is typically caused by mutations in genes encoding sarcomeric proteins that regulate cardiac contractility. HCM manifestations include left ventricular hypertrophy and heart failure, arrythmias, and sudden cardiac death. How dysregulated sarcomeric force production is sensed and leads to pathological remodeling remains poorly understood in HCM, thereby inhibiting the efficient development of new therapeutics.

View Article and Find Full Text PDF
Article Synopsis
  • New COVID-19 treatments are urgently needed due to rising cases and new strains threatening vaccine effectiveness, with cell therapy, specifically iNKT cells, showing promise in tackling the disease.
  • Researchers developed a method to produce allogeneic HSC-engineered iNKT cells, enhancing their availability for treatment through engineered hematopoietic stem cells and culture techniques.
  • Preclinical results indicate that these engineered cells resemble natural iNKT cells, effectively kill SARS-CoV-2 infected cells, reduce inflammation, and are safe for use without causing graft-versus-host disease (GvHD).
View Article and Find Full Text PDF

Both opioids and nonsteroidal anti-inflammatory drugs (NSAIDS) produce deleterious side effects and fail to provide sustained relief in patients with chronic inflammatory pain. Peripheral neuroinflammation (PN) is critical for initiation and development of inflammatory pain. A better understanding of molecular mechanisms underlying PN would facilitate the discovery of new analgesic targets and the development of new therapeutics.

View Article and Find Full Text PDF

Purpose: To investigate the clinical manifestations and systemic and ocular implications of nonneoplastic uveitis masquerade syndrome (NNUMS).

Design: Retrospective case series.

Methods: The clinical data of 830 consecutive patients who presented with uveitis at a tertiary referral center in northern Taiwan between August 2013 and August 2020 were analyzed.

View Article and Find Full Text PDF