Three dissociation methods, including collision-induced dissociation (CID), electron capture dissociation (ECD), and electronic excitation dissociation (EED), were evaluated for the dissociation of doubly charged glycans using sodium or magnesium ions as charge carriers. CID produced mainly glycosidic cleavages, although more cross-ring fragment ions could be obtained at higher intensities when magnesium ions were used as charge carriers [M + Mg]. The A, A, and A ions provided structural information on the 3 → 1 and 6 → 1 linkages of the mannoses.
View Article and Find Full Text PDFIn this work, the sorbent-attached microfunnels used in funnel-based spray ionization mass spectrometry were evaluated for the all-in-one digestion of proteins. Sorbent materials, including C and TiO powders, were used as substrates to support in-funnel digestion and subsequent solid-phase extraction and purification of the digested products. In-funnel digestion protocols with and without reductive alkylation were developed for the analysis of proteins with and without disulfide linkages.
View Article and Find Full Text PDFThis study reports a rapid and robust method for the differentiation of Asian and American ginseng samples based on differential ion mobility spectrometry-tandem mass spectrometry (DMS-MS/MS). Groups of bioactive ginsenoside/pseudo-ginsenoside isomers, including Rf/Rg/F, Rb/Rb/Rc, and Rd/Re, in the ginseng extracts were sequentially separated using DMS with stepwise changes in the gas modifier concentration prior to MS analysis. The identities of the spatially separated ginsenoside/pseudo-ginsenoside isomers were confirmed by their characteristic compensation voltages at specific modifier loading and MS/MS product ions.
View Article and Find Full Text PDFDifferential ion mobility spectrometry (DMS) spatially separates ions in the gas phase using the mobility differences of the ions under applied low and high electric fields. The use of DMS as an ion filter (or ion selector) prior to mass spectrometry analysis has been compromised by the limited ion transmission efficiency. This paper reports enhancement of the DMS-MS sensitivity and signal stability using a modified CaptiveSpray™ source.
View Article and Find Full Text PDFThe structural elucidation of natural products (NPs) remains a challenge due to their structurally diversities and unpredictable functionalities, motifs, and scaffolds. Tandem mass spectrometry (MS/MS) is an effective method that assists the full elucidation of complicated NP structures. Ion activation methods play a key role in determining the fragmentation pathways and the structural information obtained from MS/MS.
View Article and Find Full Text PDFCharacterizing the structures of glycoconjungates is important because of glycan heterogeneity and structural complexity of aglycon. The presence of relatively weak glycosidic linkages leads to preferential cleavages that limit the acquisition of structural information under typical mass spectrometry dissociation conditions, such as collision-induced dissociation (CID) and infrared multiphoton dissociation. In this paper, we explored the dissociation behaviors of different members of glycoconjugates, including glycopeptides, glycoalkaloids, and glycolipids, under electron-induced dissociation (EID) conditions.
View Article and Find Full Text PDFThe gas-phase chemistry of peptide radical ions is attracting considerable interest in the fields of biology and mass spectrometry owing to its capability to provide sequence information on peptides and proteins. In this study, we observed that doubly charged peptide ions (M) can be produced from the collision-induced dissociation (CID) of Hg(II)-adducted peptide ions. The chemical nature and, thus, the dissociation pathways of this hydrogen-deficient biradical M species is intriguing.
View Article and Find Full Text PDFThe practical applications of moisture sensitive metal-organic frameworks (MOFs) in the extraction technique are faced with avoided challenges related to competitive adsorption and hydrostability. The target analytes cannot be effectively extracted under humid conditions because of the competitive moisture adsorption and/or framework structure collapse of MOFs. In this Letter, metal-organic framework (MOF)@microporous organic network (MON) hybrid materials were explored for the first time as fiber coatings for solid-phase microextraction (SPME).
View Article and Find Full Text PDFIn this work, a core-shell Fe3O4@SiO2@MOF/TiO2 nanocomposite was synthesized and used to as adsorbent for magnetic solid-phase extraction (MSPE) of triazole fungicides from environmental water samples. Five triazole fungicides, namely, triadimenol, hexaconazole, diniconazole, myclobutanil, and tebuconazole, were selected as target analytes for MSPE. These analytes were quantitatively adsorbed on microspheres, and the sorbents were separated from the solution by using a magnet.
View Article and Find Full Text PDFIn this work, sorbent-attached membrane funnel-based spray ionization mass spectrometry was explored for quantitative analysis of anti-diabetic drugs spiked in human plasma. C18-attached membrane funnel was fabricated for in situ extraction and clean-up to alleviate matrix suppression effect in the ionization process. Repaglinide was used as a target analyte of anti-diabetic drugs.
View Article and Find Full Text PDFIn this work, the thermo-responsive polymer PNIPAM tethered to Fe3O4@SiO2@MOF core-shell magnetic microspheres was first synthesized by a surface-selective post-synthetic strategy and underwent highly efficient magnetic solid-phase extraction (MSPE) of alkylphenols from aqueous samples. Alkylphenols, including 4-tert-octylphenol (OP) and 4-n-nonylphenol (NP), were selected as target compounds. The sample quantification was carried out using LC-MS/MS in multiple reaction monitor (MRM) mode.
View Article and Find Full Text PDFCurrent phytochemical research on ginsengs focuses on the structural characterization and isomer differentiation of ginsenosides. In this Letter, electron-induced dissociation (EID) was initially investigated by analyzing isomeric ginsenosides. EID provided more structural information on their differentiation than collision-induced dissociation (CID) did.
View Article and Find Full Text PDFRationale: Samples analyzed in proteomic studies by nanoelectrospray ionization (nanoESI) are extremely limited in quantity requiring careful sample handling to prevent loss upon transfer and to maintain sample concentration. To alleviate the operational process and reduce the cost of nanoESI, it is essential to develop more robust, simple and sensitive analytical variants of the process. Membrane funnel-based spray was developed for analysis of proteins/peptides in this study.
View Article and Find Full Text PDFEur J Mass Spectrom (Chichester)
November 2015
It has been previously reported that the glycosylation site and protein-sequence information could be obtained for ribonuclease B by top-down electron-capture dissociation (ECD) and collision-induced dissociation (CID) mass spectrometry (MS). However, the sequence coverage of ribonuclease B was limited in a single activation, and the structural information on the glycan moiety was not probed successfully in previous experiments. Here, we demonstrate that ECD and CID techniques can be used together as an effective top- down method for the structural characterization of intact glycoprotein.
View Article and Find Full Text PDFEur J Mass Spectrom (Chichester)
November 2015
The gas-phase dissociation pathways of proteins/peptides are usually affected by the nature of the charge carrier and the sequence of amino acid residues. The effects of peptide structural parameters, including peptide composition, chain length and amide hydrogen, on the gas-phase dissociation of Cu(II)-model peptide complexes were explored in this study. Polyglycine peptides with flexible frames were used as probes to reduce the complexity of the system and illustrate the mechanism.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
October 2015
Rationale: The electron capture dissociation (ECD) of proteins/peptides is affected by the nature and sequence of amino acid residues. Electron capture/transfer with no dissociation is an intriguing phenomenon that has occasionally been observed. We have previously identified that diarginated peptides enriched with glutamic acid residues were found to show suppression of backbone fragmentation.
View Article and Find Full Text PDFIn this work, a miniaturized solid-phase extraction (SPE) platform, called sorbent membrane funnel, which permits in situ cleanup prior to membrane funnel-based spray analysis was developed. The fabrication of funnel and the mounting of SPE sorbent were simple and straightforward by a homemade punching system. Using different sorbents, the SPE sorbent funnel has been successfully applied in spray analysis of drug molecules spiked in human plasma, trypsin digested solution of bovine serum albumin in the presence of high concentration of chaotropic reagents, and phosphopeptides in the tryptic digested solution of casein.
View Article and Find Full Text PDF