Publications by authors named "Y-E Sun"

Sodium oligomannate (GV-971), an oligosaccharide drug approved in China for treating mild-to-moderate Alzheimer's disease (AD), was previously found to recondition the gut microbiota and limit altered peripheral Th1 immunity in AD transgenic mice. As a follow-up study, we here made advances by pinpointing a Lactobacillus murinus (L.m.

View Article and Find Full Text PDF
Article Synopsis
  • Dual immune checkpoint blockade (ICB) using CTLA4 and PD-(L)1 inhibitors shows improved anti-tumor effectiveness and immune toxicity compared to PD-(L)1 inhibitors alone in advanced non-small-cell lung cancer (NSCLC) patients.
  • Patients with mutations in STK11 and/or KEAP1 genes benefit more from the combination treatment compared to those receiving only PD-(L)1 inhibitors, as shown in the POSEIDON trial.
  • The loss of KEAP1 serves as a strong predictor for the success of dual ICB, as it leads to a more favorable outcome by changing the tumor's immune environment to better engage CD4 and CD8 T cells for anti-tumor activity. *
View Article and Find Full Text PDF

Nonalcoholic steatohepatitis (NASH) prevalence is rising with no pharmacotherapy approved. A major hurdle in NASH drug development is the poor translatability of preclinical studies to safe/effective clinical outcomes, and recent failures highlight a need to identify new targetable pathways. Dysregulated glycine metabolism has emerged as a causative factor and therapeutic target in NASH.

View Article and Find Full Text PDF

Metabolically labile prodrugs can experience stark differences in catabolism incurred by the chosen route of administration. This is especially true for phosph(on)ate prodrugs, in which successive promoiety removal transforms a lipophilic molecule into increasingly polar compounds. We previously described a phosphonate inhibitor of enolase (HEX) and its bis-pivaloyloxymethyl ester prodrug (POMHEX) capable of eliciting strong tumor regression in a murine model of enolase 1 ()-deleted glioblastoma following parenteral administration.

View Article and Find Full Text PDF

Background: Elevated plasma Lp-PLA (lipoprotein-associated phospholipase A) activity is closely associated with an increased risk of cardiovascular events. However, whether and how Lp-PLA is directly involved in the pathogenesis of atherosclerosis is still unclear. To examine the hypothesis that Lp-PLA could be a potential preventative target of atherosclerosis, we generated Lp-PLA knockout rabbits and investigated the pathophysiological functions of Lp-PLA.

View Article and Find Full Text PDF

Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.

View Article and Find Full Text PDF

Lower circulating levels of glycine are consistently reported in association with cardiovascular disease (CVD), but the causative role and therapeutic potential of glycine in atherosclerosis, the underlying cause of most CVDs, remain to be established. Here, following the identification of reduced circulating glycine in patients with significant coronary artery disease (sCAD), we investigated a causative role of glycine in atherosclerosis by modulating glycine availability in atheroprone mice. We further evaluated the atheroprotective potential of DT-109, a recently identified glycine-based compound with dual lipid/glucose-lowering properties.

View Article and Find Full Text PDF

Background: Atherosclerosis-related cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Cholesterol crystals (CCs) induce inflammation in atherosclerosis and are associated with unstable plaques and poor prognosis, but no drug can remove CCs in the clinic currently.

Methods: We generated a phospholipid-based and high-density lipoprotein (HDL)-like nanoparticle, miNano, and determined CC-dissolving capacity, cholesterol efflux property, and anti-inflammation effects of miNano in vitro.

View Article and Find Full Text PDF

Astaxanthin (AX) is a carotenoid that exerts potent antioxidant activity and acts in the lipid bilayer. This study aimed to investigate the effects of AX on muscle-atrophy-mediated disturbance of mitochondria, which have a lipid bilayer. Tail suspension was used to establish a muscle-atrophied mouse model.

View Article and Find Full Text PDF

Objective: Vascular endothelial cells (ECs) play a critical role in maintaining vascular homeostasis. Aberrant EC metabolism leads to vascular dysfunction and metabolic diseases. TFEB (transcription factor EB), a master regulator of lysosome biogenesis and autophagy, has protective effects on vascular inflammation and atherosclerosis.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) including nonalcoholic steatohepatitis (NASH) has reached epidemic proportions with no pharmacological therapy approved. Lower circulating glycine is consistently reported in patients with NAFLD, but the causes for reduced glycine, its role as a causative factor, and its therapeutic potential remain unclear. We performed transcriptomics in livers from humans and mice with NAFLD and found suppression of glycine biosynthetic genes, primarily alanine-glyoxylate aminotransferase 1 ().

View Article and Find Full Text PDF

Objective: Currently, there are no approved drugs for abdominal aortic aneurysm (AAA) treatment, likely due to limited understanding of the primary molecular mechanisms underlying AAA development and progression. BAF60a-a unique subunit of the SWI/SNF (switch/sucrose nonfermentable) chromatin remodeling complex-is a novel regulator of metabolic homeostasis, yet little is known about its function in the vasculature and pathogenesis of AAA. In this study, we sought to investigate the role and underlying mechanisms of vascular smooth muscle cell (VSMC)-specific BAF60a in AAA formation.

View Article and Find Full Text PDF

Objective: Clopidogrel is a commonly used P2Y inhibitor to treat and prevent arterial thrombotic events. Clopidogrel is a prodrug that requires bioactivation by CYP (cytochrome P450) enzymes to exert antiplatelet activity. Diabetes mellitus is associated with an increased risk of ischemic events, and impaired ability to generate the active metabolite (AM) from clopidogrel.

View Article and Find Full Text PDF

The structural diversity of glycans on cells-the glycome-is vast and complex to decipher. Glycan arrays display oligosaccharides and are used to report glycan hapten binding epitopes. Glycan arrays are limited resources and present saccharides without the context of other glycans and glycoconjugates.

View Article and Find Full Text PDF

Objective- Mutations in Krüppel like factor-11 ( KLF11), a gene also known as maturity-onset diabetes mellitus of the young type 7, contribute to the development of diabetes mellitus. KLF11 has anti-inflammatory effects in endothelial cells and beneficial effects on stroke. However, the function of KLF11 in the cardiovascular system is not fully unraveled.

View Article and Find Full Text PDF

Clopidogrel is a prodrug that requires bioactivation by cytochrome P450 (P450) enzymes to a pharmacologically active metabolite for antiplatelet action. The clinical limitations of clopidogrel are in large part due to its poor pharmacokinetics resulting from inefficient bioactivation by P450s. In this study, we determined the pharmacokinetics and pharmacodynamics of a novel conjugate of clopidogrel, referred to as ClopNPT, in animal models and we evaluated its potential to overcome the limitations of clopidogrel.

View Article and Find Full Text PDF

Background: High altitude is a challenging condition caused by insufficient oxygen supply. Inability to adjust to hypoxia may lead to pulmonary edema, stroke, cardiovascular dysfunction, and even death. Thus, understanding the molecular basis of adaptation to high altitude may reveal novel therapeutics to counteract the detrimental consequences of hypoxia.

View Article and Find Full Text PDF

Background: Rad (Ras associated with diabetes) GTPase is the prototypic member of a subfamily of Ras-related small G proteins. The aim of the present study was to define whether Rad plays an important role in mediating cardiac hypertrophy.

Methods And Results: We document for the first time that levels of Rad mRNA and protein were decreased significantly in human failing hearts (n=10) compared with normal hearts (n=3; P<0.

View Article and Find Full Text PDF

In this study, a tpi1 gene encoding for the enzyme triose phosphate isomerase in Klebsiella pneumoniae DSM2026 was knocked out in an effort to metabolically engineer this strain as a model system for the production of 1,3-propanediol. Investigations of the tpi1 knockout mutant led to the discovery of a second tpi gene (tpi2) in this organism. The new tpi2 gene was cloned and sequenced.

View Article and Find Full Text PDF