Background Handcrafted radiomics and deep learning (DL) models individually achieve good performance in lesion classification (benign vs malignant) on contrast-enhanced mammography (CEM) images. Purpose To develop a comprehensive machine learning tool able to fully automatically identify, segment, and classify breast lesions on the basis of CEM images in recall patients. Materials and Methods CEM images and clinical data were retrospectively collected between 2013 and 2018 for 1601 recall patients at Maastricht UMC+ and 283 patients at Gustave Roussy Institute for external validation.
View Article and Find Full Text PDF(1) Background: The main aim was to develop a prototype application that would serve as an open-source repository for a curated subset of predictive and prognostic models regarding oncology, and provide a user-friendly interface for the included models to allow online calculation. The focus of the application is on providing physicians and health professionals with patient-specific information regarding treatment plans, survival rates, and side effects for different expected treatments. (2) Methods: The primarily used models were the ones developed by our research group in the past.
View Article and Find Full Text PDFThe aim of this study is to build a decision support system (DSS) to select radical prostatectomy (RP) or external beam radiotherapy (EBRT) for low- to intermediate-risk prostate cancer patients. We used an individual state-transition model based on predictive models for estimating tumor control and toxicity probabilities. We performed analyses on a synthetically generated dataset of 1000 patients with realistic clinical parameters, externally validated by comparison to randomized clinical trials, and set up an in silico clinical trial for elderly patients.
View Article and Find Full Text PDFBackground: A multifactorial decision support system (mDSS) is a tool designed to improve the clinical decision-making process, while using clinical inputs for an individual patient to generate case-specific advice. The study provides an overview of the literature to analyze current available mDSS focused on prostate cancer (PCa), in order to better understand the availability of decision support tools as well as where the current literature is lacking.
Methods: We performed a MEDLINE literature search in July 2018.
Precision medicine is the future of health care: please watch the animation at https://vimeo.com/241154708 . As a technology-intensive and -dependent medical discipline, oncology will be at the vanguard of this impending change.
View Article and Find Full Text PDF