Publications by authors named "Y a Sabo"

With current treatments addressing only a fraction of pathogens and new viral threats constantly evolving, there is a critical need to expand our existing therapeutic arsenal. To speed the rate of discovery and better prepare against future threats, we establish a high-throughput platform capable of screening compounds against 40 diverse viral proteases simultaneously. This multiplex approach is enabled by using cellular biosensors of viral protease activity combined with DNA-barcoding technology, as well as several design innovations that increase assay sensitivity and correct for plate-to-plate variation.

View Article and Find Full Text PDF

Reports have described SARS-CoV-2 rebound in COVID-19 patients treated with nirmatrelvir, a 3CL protease inhibitor. The cause remains a mystery, although drug resistance, re-infection, and lack of adequate immune responses have been excluded. We now present virologic findings that provide a clue to the cause of viral rebound, which occurs in ∼20% of the treated cases.

View Article and Find Full Text PDF

The human respiratory syncytial virus (hRSV) and the human metapneumovirus (hMPV) are important human respiratory pathogens from the Pneumoviridae family. Both are responsible for severe respiratory tract infections in infants, young children, elderly individuals, adults with chronic medical conditions, and immunocompromised patients. Despite their large impact on human health, vaccines for hRSV were only recently introduced, and only limited treatment options exist.

View Article and Find Full Text PDF

Reports have described SARS-CoV-2 rebound in COVID-19 patients treated with nirmatrelvir, a 3CL protease inhibitor. The cause remains a mystery, although drug resistance, re-infection, and lack of adequate immune responses have been excluded. We now present virologic findings that provide a clue to the cause of viral rebound, which occurs in ~20% of the treated cases.

View Article and Find Full Text PDF

Nirmatrelvir is a specific antiviral drug that targets the main protease (M) of SARS-CoV-2 and has been approved to treat COVID-19. As an RNA virus characterized by high mutation rates, whether SARS-CoV-2 will develop resistance to nirmatrelvir is a question of concern. Our previous studies have shown that several mutational pathways confer resistance to nirmatrelvir, but some result in a loss of viral replicative fitness, which is then compensated for by additional alterations.

View Article and Find Full Text PDF