Background: Enumeration of residual DNA repair foci 24 hours or more after exposure to ionizing radiation (IR) is often used to assess the efficiency of DNA double-strand break repair. However, the relationship between the number of residual foci in irradiated cells and the radiation dose is still poorly understood. The aim of this work was to investigate the dose responses for residual DNA repair foci in normal human fibroblasts after X-ray exposure in the absorbed dose range from 0.
View Article and Find Full Text PDFPerovskite solar cells represent the most attractive emerging photovoltaic technology, but their practical implementation is limited by solar cell devices' low levels of operational stability. The electric field represents one of the key stress factors leading to the fast degradation of perovskite solar cells. To mitigate this issue, one must gain a deep mechanistic understanding of the perovskite aging pathways associated with the action of the electric field.
View Article and Find Full Text PDFDNA repair (DNA damage) foci observed 24 h and later after irradiation are called "residual" in the literature. They are believed to be the repair sites for complex, potentially lethal DNA double strand breaks. However, the features of their post-radiation dose-dependent quantitative changes and their role in the processes of cell death and senescence are still insufficiently studied.
View Article and Find Full Text PDFWe studied the formation of double-strand DNA breaks (DNA DSB) induced by femtosecond laser radiation in A549 human lung adenocarcinoma cells using immunocytochemical staining of the resulting tracks of a specific DSB marker protein phosphorylated ATM kinase (phospho-ATM). Additionally, colocalization of phospho-ATM tracks with γH2AX protein tracks was studied. The results of immunocytochemical analysis showed that 30 min after irradiation of cells with femtosecond pulses with energies of 1 and 2 nJ (radiation power density 2×10 and 4×10 W×cm, respectively), the formation of tracks consisting of phospho-ATM and γH2AX proteins located in sites where the laser beam passes through the cell nuclei was observed.
View Article and Find Full Text PDFWe studied quantitative yield of residual (24 h post-irradiation) phosphorylated histone (γH2AX) foci as a marker of DNA double strand breaks in wild-type A549 and p53-deficient H1299 human lung carcinoma cells after exposure to subpicosecond (energy 4 MeV, pulse duration 400 fsec, peak dose rate during the pulse 16 GGy/s) and quasi-continuous (energy 3.6 MeV) beams of accelerated electrons in a dose range of 0.5-10.
View Article and Find Full Text PDF