The Toroidal Magnetized System device has been significantly upgraded to enable development of various wall conditioning techniques, including methods based on ion and electron cyclotron (IC/EC) range of frequency plasmas, and to complement plasma-wall interaction research in tokamaks and stellarators. The toroidal magnetic field generated by 16 coils can reach its maximum of 125 mT on the toroidal axis. The EC system is operated at 2.
View Article and Find Full Text PDFSeveral pyrene-boron-dipyrromethene (BODIPY) and pyrene-BODIPY-ferrocene derivatives with a fully conjugated pyrene fragment appended to the α-position(s) of the BODIPY core have been prepared by Knoevenagel condensation reaction and characterized by one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR), UV-vis, fluorescence spectroscopy, high-resolution mass spectrometry as well as X-ray crystallography. The redox properties of new donor-acceptor BODIPY dyads and triads were studied by electrochemical (cyclic voltammetry (CV) and differential pulse voltammetry (DPV)) and spectroelectrochemical approaches. Formation of weakly bonded noncovalent complexes between the new pyrene-BODIPYs and nanocarbon materials (C, C, single-walled carbon nanotube (SWCNT), and graphene) was studied by UV-vis, steady-state fluorescent, and time-resolved transient absorption spectroscopy.
View Article and Find Full Text PDFAntibody-drug conjugates have elicited great interest recently as targeted chemotherapies for cancer. Recent preclinical and clinical data have continued to raise questions about optimizing the design of these complex therapeutics. Biochemical methods for site-specific antibody conjugation have been a design feature of recent clinical ADCs, and preclinical reports suggest that site-specifically conjugated ADCs generically offer improved therapeutic indices (i.
View Article and Find Full Text PDFA new type of antibody-drug conjugate (ADC) has been prepared that contains a sulfur-bearing maytansinoid attached to an antibody via a highly stable tripeptide linker. Once internalized by cells, proteases in catabolic vesicles cleave the peptide of the ADC's linker causing self-immolation that releases a thiol-bearing metabolite, which is then -methylated. Conjugates were prepared with peptide linkers containing only alanyl residues, which were all l isomers or had a single d residue in one of the three positions.
View Article and Find Full Text PDF