Publications by authors named "Y V Fyodorov"

Using the supersymmetric method of random matrix theory within the Heidelberg approach framework we provide statistical description of stationary intensity sampled in locations inside an open wave-chaotic cavity, assuming that the time-reversal invariance inside the cavity is fully broken. In particular, we show that when incoming waves are fed via a finite number M of open channels the probability density P(I) for the single-point intensity I decays as a power law for large intensities: P(I)∼I^{-(M+2)}, provided there is no internal losses. This behavior is in marked difference with the Rayleigh law P(I)∼exp(-I/I[over ¯]), which turns out to be valid only in the limit M→∞.

View Article and Find Full Text PDF

Complex eigenvalues of random matrices J=GUE+iγdiag(1,0,…,0) provide the simplest model for studying resonances in wave scattering from a quantum chaotic system via a single open channel. It is known that in the limit of large matrix dimensions N≫1 the eigenvalue density of undergoes an abrupt restructuring at γ=1, the critical threshold beyond which a single eigenvalue outlier ("broad resonance") appears. We provide a detailed description of this restructuring transition, including the scaling with of the width of the critical region about the outlier threshold γ=1 and the associated scaling for the real parts ("resonance positions") and imaginary parts ("resonance widths") of the eigenvalues which are farthest away from the real axis.

View Article and Find Full Text PDF

The core element of the reindeer rabies eradication strategy is regular application of vaccines to obtain and uphold a vaccination coverage sufficient for the ceasing of rabies virus transmission. This article presents the results of reindeer humoral immunity intensity and duration study after the immunization with two form of inactivated rabies vaccines (adjuvanted liquid vaccine and non-adjuvanted lyophilized vaccine) based on the Shchelkovo-51 rabies virus strain. Efficiency of post-vaccine immunity was assessed by measuring the animal blood serum virus-neutralizing antibody level in a neutralization test.

View Article and Find Full Text PDF

We study the statistical properties of the complex generalization of Wigner time delay τ_{W} for subunitary wave-chaotic scattering systems. We first demonstrate theoretically that the mean value of the Re[τ_{W}] distribution function for a system with uniform absorption strength η is equal to the fraction of scattering matrix poles with imaginary parts exceeding η. The theory is tested experimentally with an ensemble of microwave graphs with either one or two scattering channels and showing broken time-reversal invariance and variable uniform attenuation.

View Article and Find Full Text PDF

We consider a nonlinear autonomous system of [Formula: see text] degrees of freedom randomly coupled by both relaxational ("gradient") and nonrelaxational ("solenoidal") random interactions. We show that with increased interaction strength, such systems generically undergo an abrupt transition from a trivial phase portrait with a single stable equilibrium into a topologically nontrivial regime of "absolute instability" where equilibria are on average exponentially abundant, but typically, all of them are unstable, unless the dynamics is purely gradient. When interactions increase even further, the stable equilibria eventually become on average exponentially abundant unless the interaction is purely solenoidal.

View Article and Find Full Text PDF