Recently developed diffusive memristors have gathered a large amount of research attention due to their unique property to exhibit a variety of spiking regimes reminiscent to that found in biological cells, which creates a great potential for their application in neuromorphic systems of artificial intelligence and unconventional computing. These devices are known to produce a huge range of interesting phenomena through the interplay of regular, chaotic, and stochastic behavior. However, the character of these interplays as well as the instabilities responsible for different dynamical regimes are still poorly studied because of the difficulties in analyzing the complex stochastic dynamics of the memristive devices.
View Article and Find Full Text PDFPhys Rev Lett
September 2011
Spike train regularity of the noisy neural auditory system model under the influence of two sinusoidal signals with different frequencies is investigated. For the increasing ratio m/n of the input signal frequencies (m, n are natural numbers) the linear growth of the regularity is found at the fixed difference (m - n). It is shown that the spike train regularity in the model is high for harmonious chords of input tones and low for dissonant ones.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2010
The phenomena of dissonance and consonance in a simple auditory sensory model composed of three neurons are considered. Two of them, here so-called sensory neurons, are driven by noise and subthreshold periodic signals with different ratio of frequencies, and its outputs plus noise are applied synaptically to a third neuron, so-called interneuron. We present a theoretical analysis with a probabilistic approach to investigate the interspike intervals statistics of the spike train generated by the interneuron.
View Article and Find Full Text PDF