Publications by authors named "Y Uraoka"

This work unveils critical insights through spectroscopic analysis highlighting electrical phenomena and oxygen vacancy generation in self-aligned fully solution-processed oxide thin-film transistors (TFTs). Ar inductively coupled plasma treatment was conducted to fabricate an amorphous indium zinc oxide (a-InZnO) TFT in a self-aligned process. Results showed that the Ar plasma-activated a-InZnO regions became conductive, which means that a homogeneous layer can act as both channel and electrode in the device.

View Article and Find Full Text PDF

In this study, we utilized 50 nm BaTiO (BTO) nanoparticles and polysiloxane (PSX) with a higher concentration of methyl and silica groups to fabricate insulating layers at a low curing temperature of 100 °C using a solution-based method. This approach aims to enhance film uniformity while retaining the ferroelectric properties. Consequently, we maintained a minimal leakage current in thin-film transistors (TFTs) while achieving transfer characteristics characterized by a distinct hysteresis.

View Article and Find Full Text PDF

Ferroelectric nanoparticles have attracted much attention for numerous electronic applications owing to their nanoscale structure and size-dependent behavior. Barium titanate (BTO) nanoparticles with two different sizes (20 and 100 nm) were synthesized and mixed with a polysiloxane (PSX) polymer forming a nanocomposite solution for high- nanodielectric films. Transition from the ferroelectric to paraelectric phase of BTO with different nanoparticle dimensions was evaluated through variable-temperature X-ray diffraction measurement accompanied by electrical analysis using capacitor structures.

View Article and Find Full Text PDF

During data-driven process condition optimization on a laboratory scale, only a small-size data set is accessible and should be effectively utilized. On the other hand, during process development, new operations are frequently inserted or current operations are modified. These accessible data sets are somewhat related but not exactly the same type.

View Article and Find Full Text PDF

The insulator/semiconductor interface structure is the key to electric device performance, and much interest has been focused on understanding the origin of interfacial defects. However, with conventional techniques, it is difficult to analyze the interfacial atomic structure buried in the insulating film. Here, we reveal the atomic structure at the interface between an amorphous aluminum oxide and diamond using a developed electron energy analyzer for photoelectron holography.

View Article and Find Full Text PDF