Publications by authors named "Y U-pratya"

Anti-CD19 chimeric antigen receptor (CAR)-T cell therapy has evolved as a standard of care for various forms of relapsed/refractory B cell malignancies in major developed countries. However, access to industry-driven CAR-T cell therapy is limited in developing countries, partly due to the centralized manufacturing system. Here, we demonstrated the feasibility of the point-of-care (POC) manufacturing of anti-CD19 CAR-T cells from heavily pretreated patients and healthy graft donors at an academic medical center in Thailand using a closed semi-automated production platform, CliniMACS Prodigy, and established in-process quality control and release testing to ensure their identity, purity, sterility, safety, and potency.

View Article and Find Full Text PDF

Runt-Related Transcription Factor 1c (RUNX1c) plays an important role in regulating the development of hematopoietic stem cells (HSC). Using CRISPR/Cas9 gene editing technology, we established a RUNX1c-eGFP reporter cell line from the MUSIi012-A cell line. The MUSIi012-A-4 cell line has normal stem cell morphology and karyotype, expresses pluripotency markers, and can be differentiated into all three germ layers in vitro and in vivo.

View Article and Find Full Text PDF

MUSIi016-A, a human induced pluripotent stem cell (iPSC), generated from peripheral blood mononuclear cells of a healthy blood group O Rh positive donor was reprogrammed using Sendai viral vectors containing Yamanaka's factors. MUSIi016-A iPSC showed pluripotent stem cell characteristics, highly expressed pluripotent markers, and a capacity to differentiate into all three embryonic cell lineages. This iPSC can be used as a model for the generation of blood cells in vitro.

View Article and Find Full Text PDF

Yes-associated protein (YAP), an important effector protein of the Hippo signaling pathway, acts as a molecular switch in controlling cell proliferation and apoptosis. In this study, a YAP-targeted isogenic sub-clone of the MUSIe002-A was generated, designated as MUSIe002-A-1. The MUSIe002-1 cell line had normal pluripotent stem cell characteristics and karyotype.

View Article and Find Full Text PDF

Myeloid differentiation blockage at immature and self-renewing stages is a common hallmark across all subtypes of acute myeloid leukemia (AML), despite their genetic heterogeneity. Metabolic state is an important regulator of hematopoietic stem cell (HSC) self-renewal and lineage-specific differentiation as well as several aggressive cancers. However, how O-GlcNAcylation, a nutrient-sensitive posttranslational modification of proteins, contributes to both normal myelopoiesis and AML pathogenesis remains largely unknown.

View Article and Find Full Text PDF