Indonesia's deep-sea microbial communities remain poorly understood, prompting the need for comprehensive investigations. This study aimed to assess the bacterial and archaeal diversities in northwestern Arafura deep-sea sediments, spanning depths of 100 to 1,457 m using a 16S rRNA based-metagenomic sequencing approach, without technical and biological replicates. Principal component analyses based on the Bray-Curtis dissimilarity index indicated that most of the bacterial and archaeal communities were habitat-specific and influenced by depth.
View Article and Find Full Text PDFA new piezotolerant alkane-degrading bacterium (Marinobacter hydrocarbonoclasticus strain #5) was isolated from deep (3475 m) Mediterranean seawater and grown at atmospheric pressure (0.1 MPa) and at 35 MPa with hexadecane as sole source of carbon and energy. Modification of the hydrostatic pressure influenced neither the growth rate nor the amount of degraded hexadecane (approximately 90%) during 13 days of incubation.
View Article and Find Full Text PDFLittle information exists about the ability of halophilic archaea present in hypersaline environments to degrade hydrocarbons. In order to identify the potential actors of hydrocarbon degradation in these environments, enrichment cultures were prepared using samples collected from a shallow crystallizer pond with no known contamination history in Camargue, France, with n-alkanes provided as source of carbon and energy. Five alkane-degrading halophilic archaeal strains were isolated: one (strain MSNC 2) was closely related to Haloarcula and three (strains MSNC 4, MSNC 14, and MSNC 16) to Haloferax.
View Article and Find Full Text PDFLett Appl Microbiol
February 2010
Aims: To isolate and identify alkane-degrading bacteria from deep-sea superficial sediments sampled at a north-western Mediterranean station.
Methods And Results: Sediments from the water/sediment interface at a 2400 m depth were sampled with a multicorer at the ANTARES site off the French Mediterranean coast and were promptly enriched with Maya crude oil as the sole source of carbon and energy. Alkane-degrading bacteria belonging to the genera Alcanivorax, Pseudomonas, Marinobacter, Rhodococcus and Clavibacter-like were isolated, indicating that the same groups were potentially involved in hydrocarbon biodegradation in deep sea as in coastal waters.