Infection with human cytomegalovirus (HCMV) can cause severe complications in newborns and immunocompromised patients, and a prophylactic or therapeutic vaccine against HCMV is not available. Here, we generated a HCMV vaccine candidate fulfilling the regulatory requirements for GMP-compliant production and clinical testing. A novel synthetic fusion gene consisting of the coding sequences of HCMV pp65 and IE1 having a deleted nuclear localization sequence and STAT2 binding domain was introduced into the genome of the attenuated vaccinia virus strain MVA.
View Article and Find Full Text PDFVaccination is highly effective in preventing various infectious diseases, whereas the constant threat of new emerging pathogens necessitates the development of innovative vaccination principles that also confer rapid protection in a case of emergency. Although increasing evidence points to T cell immunity playing a critical role in vaccination against viral diseases, vaccine efficacy is mostly associated with the induction of antibody responses. Here we analyze the immunological mechanism(s) of rapidly protective vaccinia virus immunization using mousepox as surrogate model for human smallpox.
View Article and Find Full Text PDFThe emergence of zoonotic orthopoxvirus infections and the threat of possible intentional release of pathogenic orthopoxviruses have stimulated renewed interest in understanding orthopoxvirus infections and the resulting diseases. Ectromelia virus (ECTV), the causative agent of mousepox, offers an excellent model system to study an orthopoxvirus infection in its natural host. Here, we investigated the role of the vaccinia virus ortholog N1L in ECTV infection.
View Article and Find Full Text PDFBackground Aims: Modified vaccinia Ankara (MVA) is a promising vaccine vector for infectious diseases and malignancies. It is fundamental to ascertain its tropism in human leukocyte populations and immunostimulatory mechanisms for application in immunotherapy.
Methods: Human peripheral blood mononuclear cells (PBMC) and leukocyte subpopulations [monocyte-derived dendritic cells (DC), monocytes and B cells] were infected with MVA in order to evaluate their infection rate, changes in surface markers, cytokine expression and apoptosis.
Interleukin (IL)-23 is a heterodimeric cytokine composed of the IL-23-specific subunit p19 and the p40 subunit which also constitutes part of IL-12. IL-23 propagates development of Th17 cells, a novel T cell subset which produces IL-17 but no interferon-gamma or IL-4. For both, IL-23 and IL-23-driven IL-17, a crucial role in autoimmune diseases such as experimental autoimmune encephalomyelitis, collagen-induced arthritis, and colitis is well accepted.
View Article and Find Full Text PDF