Drk, a homologue of human GRB2 in , receives signals from outside the cells through the interaction of its SH2 domain with the phospho-tyrosine residues in the intracellular regions of receptor tyrosine kinases (RTKs) such as Sevenless, and transduces the signals downstream through the association of its N- and C-terminal SH3 domains (Drk-NSH3 and Drk-CSH3, respectively) with proline-rich motifs (PRMs) in Son of Sevenless (Sos) or Daughter of Sevenless (Dos). Isolated Drk-NSH3 exhibits a conformational equilibrium between the folded and unfolded states, while Drk-CSH3 adopts only a folded confirmation. Drk interacts with PRMs of the PxxPxR motif in Sos and the PxxxRxxKP motif in Dos.
View Article and Find Full Text PDFThe ability to control the polarity of an all-sputtered epitaxial GaN/AlN/Al film on a Si(111) substrate via intermediate oxidization was investigated. A stable surface of GaN on a Si substrate is a N-terminated surface (-c surface); hence, for electric device applications, the Ga-terminated surface (+c surface) is preferable. The GaN/AlN/Al film on Si(111) showed a -c surface, as confirmed by time-of-flight low-energy atom scattering spectroscopy (TOFLAS) and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFProteins in living cells interact specifically or nonspecifically with an enormous number of biomolecules. To understand the behavior of proteins under intracellular crowding conditions, it is indispensable to observe their three-dimensional (3D) structures at the atomic level in a physiologically natural environment. We demonstrate the first de novo protein structure determinations in eukaryotes with the sf9 cell/baculovirus system using NMR data from living cells exclusively.
View Article and Find Full Text PDFStrontium tantalum oxynitrides were prepared within the nominal composition range of 1.0 ≤ x ≤ 2.0, where x = Sr/Ta atomic ratio.
View Article and Find Full Text PDFActivity of singlet oxygen sensitizers for photoinactivation of bacteria and photodynamic therapy of tumor cells has been evaluated using nonpathogenic model cells, such as Escherichia coli, Saccharomyces cerevisiae, and HeLa cells. Among them, E. coli, gram-negative bacterium, has complex membrane structures in the cell wall, resulting in an impermeable barrier to antimicrobial agents.
View Article and Find Full Text PDF